
Memory Disaggregation: Open Challenges in the Era of CXL
Hasan Al Maruf, Mosharaf Chowdhury
SymbioticLab, University of Michigan

Abstract
Compute and memory are tightly coupled within traditional
datacenter servers. Large-scale datacenter operators have
identified this coupling as a root cause behind fleet-wide re-
source underutilization and increasing Total Cost of Owner-
ship (TCO). With the advent of ultra-fast networks and cache-
coherent interfaces, memory disaggregation has emerged as a
potential solution, whereby applications can leverage avail-
able memory even outside server boundaries. In this paper,
we discuss some open challenges from a software perspec-
tive toward building next-generation memory disaggregation
systems leveraging emerging cache-coherent interconnects.

1 Cache-Coherent Interconnects
Compute Express Link (CXL) [2] is a new processor-to-
peripheral/accelerator cache-coherent interconnect protocol
that builds on and extends the existing PCIe protocol by allow-
ing coherent communication between the connected devices.1

It allows cache-line granularity access to the connected de-
vices and underlying hardware maintains cache-coherency
and consistency. With PCIe 5.0, CPU-to-CXL interconnect
bandwidth is similar to the cross-socket interconnects on a
dual-socket machine [18]. CXL adds around 50-100 nanosec-
onds of extra latency over normal DRAM access.

CXL Roadmap. Today, CXL-enabled CPUs and memory
devices support CXL 1.0/1.1 that enables a point-to-point link
between CPUs and accelerator memory or between CPUs and
memory extenders. CXL 2.0 spec enables one-hop switching
that allows multiple accelerators without (Type-1 device) or
with memory (Type-2 device) to be configured to a single
host and have their caches be coherent to the CPUs. It also
allows memory pooling across multiple hosts using memory
expanding devices (Type-3 device). A CXL switch has a fabric
manager (it can be on-board or external) that is in charge of
the device address-space management. Devices can be hot-
plugged to the switch. A virtual switch partitions the CXL-
Memory and isolate the resources between multiple hosts.

CXL 3.0 adds multi-hop hierarchical switching – one can
have any complex types of network through cascading and
fan-out. CXL 3.0 supports PCIe 6.0 (64 GT/s i.e., up to 256
GB/s of throughput for a x16 duplex link) and expand the
horizon of very complex and composable rack-scale server

1Prior industry standards in this space such as CCIX [1], OpenCAPI [6],
Gen-Z [4] etc. have all come together under the banner of CXL consortium.
While there are some related research proposals (e.g., [10]), CXL is the de
facto industry standard at the time of writing this paper.

design with varied memory technologies. A new Port-Based
Routing (PBR) feature provides a scalable addressing mech-
anism that supports up to 4,096 nodes. Each node can be
any of the existing three types of devices or the new Global
Fabric Attached Memory (GFAM) device that supports differ-
ent types of memory (i.e., Persistent Memory, Flash, DRAM,
other future memory types, etc.) together in a single device.
Besides memory pooling, CXL 3.0 enables memory sharing
across multiple hosts on multiple end devices. Connected
devices (i.e., accelerators, memory expanders, NICs, etc.) can
do peer-to-peer communicate bypassing the host CPUs. In
essence, CXL 3.0 enables large networks of memory devices.

2 CXL-Disaggregated Memory at Rack-Scale
and Beyond: Open Challenges

Next-generation memory disaggregation systems that operate
between rack-scale and a little beyond, may experience the
following non-exhaustive list of challenges.

2.1 Abstractions

Memory Access Granularity. CXL enables cache-line
granular memory access over the connected devices, whereas
existing OS VMM modules are designed for page-granular
(usually, 4KB or higher) memory access. Throughout their
lifetimes, applications often write a small part of each page;
typically only 1-8 cache-lines out of 64 [8]. Page-granular
access causes large dirty data amplification and bandwidth
overuse. In contrast, fine-grained memory access over a large
memory pool causes high meta-data management overhead.
Based on an application’s memory access patterns, remote
memory abstractions should support transparent and dynamic
adjustments to memory access granularity.

Memory-QoS Interface. Traditional solutions for memory
page management focus on tracking (a subset of) pages and
counting accesses to determine the heat of the page and then
moving pages around. While this is enough to provide a two-
level, hot-vs-cold QoS, it cannot capture the entire spectrum
of page temperature. Potential solutions include assigning
a QoS level to (1) an entire application; (2) individual data
structures; (3) individual mmap() calls; or even (4) individ-
ual memory accesses. Each of these approaches have their
pros and cons. At one extreme, assigning a QoS level to an
entire application maybe simple, but it cannot capture time-
varying page temperature of large, long-running applications.
At the other end, assigning QoS levels to individual memory
accesses requires recompilation of all existing applications as



well as cumbersome manual assignments, which can lead to
erroneous QoS assignments.

2.2 Management and Runtime

Memory Address Space Management. Memory located
on a CXL device can either be mapped as Host-managed
Device Memory (HDM) or Private Device Memory (PDM).
To update the memory address space for connected devices
to different host devices, a system reset is needed; traffic to-
wards the device needs to stop to alter device address mapping
during this reset period. An alternate solution to avoid this sys-
tem reset is to map the whole physical address space to each
host when a CXL-device is added to the system. The VMM
or fabric manager in the CXL switch will be responsible to
maintain isolation during address-space management. How to
split the whole address-space in to sizable memory blocks for
the efficient physical-to-virtual address translation of a large
memory network is an interesting challenge [10, 17].

Unified Runtime for Compute Disaggregation. CXL
Type-2 devices maintains cache coherency with the CPU.
CPU and Type-2 devices can interchangeably use each other’s
memory and both get benefited. In such a setup, remote mem-
ory abstractions should track the availability of compute cores
and efficiently perform near-memory computation to improve
the overall system throughput. Besides, future datacenters
will likely be equipped with numerous domain-specific com-
pute resources/accelerators. In such a heterogeneous system,
one can borrow the idle cores of one compute resource and
perform extra computation to increase the overall system
throughput. A unified runtime to support malleable processes
that can be immediately decomposed into smaller pieces and
offloaded to any available compute nodes can improve both
application and cluster throughput [14, 16].

2.3 Allocation Policies

Memory Allocation in Heterogenous NUMA Cluster. For
better performance, hottest pages need to be on the fastest
memory tier. However, due to memory capacity constraints,
it may not always be possible to utilize the fastest or perfor-
mant memory tier. Determining what fraction of memory is
needed at a particular memory tier to maintain the desired
performance of an application at different points of its life
cycle is challenging. This is even more difficult when multi-
ple applications coexist. Efficient promotion or demotion of
pages of different temperatures across memory tiers at rack
scale is necessary. One can incorporate a lightweight but ef-
fective algorithm to select the migration target considering
node distances from the CPU, load on CPU-memory bus, cur-
rent load on different memory tiers, network state, and the
QoS requirements of the migration-candidate pages.

Allocation Policy for Memory Bandwidth Expansion.
For memory bandwidth-bound applications, CPU-to-DRAM
bandwidth often becomes the bottleneck and increases the
average memory access latency. CXL’s additional memory

bandwidth can help by spreading memory across the top-tier
and remote nodes. Instead of only placing cold pages into
CXL-Memory, which has low bandwidth consumption, an
ideal solution should place the right amount of bandwidth-
heavy, latency-insensitive pages to CXL-Memory.

Memory Sharing and Consistency. CXL 3.0 allows mem-
ory sharing across multiple devices. Through an enhanced co-
herency semantics, multiple hosts can have a coherent copy of
a shared segment, with back invalidation for synchronization.
Memory sharing improves application-level performance by
reducing unnecessary data movement and improves memory
utilization. Sharing a large memory address space, however,
results in significant overhead and complexity in the system
that plagued classic distributed shared memory (DSM) pro-
posals [12]. Furthermore, sharing memory across multiple
devices increases the security threat in the presence of any
malicious application run on the same hardware space.

2.4 Rack-Level Objectives

Rack-Scale Memory Temperature. To obtain insights into
an application’s expected performance with multiple tem-
perature tiers, it is necessary to understand the heat map of
memory usage for that application. Existing hot page identifi-
cation mechanisms [3, 5, 11, 15] are limited to a single host
OS or user-space mechanism. So far, there is no distributed
mechanism to determine the cluster-wide relative page tem-
perature. Combining the data of all the OS or user-space tools
and coordinating between them to find rack-level hot pages
is an important problem. CXL fabric manager is perhaps the
place where one can get a cluster-wide view of hardware
counters for each CXL device’s load, hit, and access-related
information. One can envision extending Chameleon [11] for
rack-scale environments to provide observability into each
application’s per-device memory temperature.

Energy- and Carbon-Aware Memory Disaggregation.
Datacenters represent a large and growing source of energy
consumption and carbon emissions [7]. Some estimates place
datacenters to be responsible for 1-2% of aggregate world-
wide electricity consumption [9, 13]. To reduce the TCO and
carbon footprint, and enhance hardware life expectancy, data-
center rack maintain a physical energy budget or power cap.
Rack-scale memory allocation, demotion, and promotion poli-
cies can be augmented by incorporating energy-awareness in
their decision-making process. In general, we can introduce
energy-awareness in the software stack that manage compute,
memory, and network resources in a disaggregated cluster.

3 Conclusion
With diverse cache-coherent interconnects finally converging
under the CXL banner, the entire industry are at the cusp of
taking a leap toward next-generation software-hardware co-
designed disaggregated systems. This will not only simplify
and better implement previous-generation memory disaggre-
gation solutions but also open up new possibilities.



References
[1] CCIX. https://www.ccixconsortium.com/.

[2] Compute Express Link (CXL). https:
//www.computeexpresslink.org/.

[3] DAMON: Data Access MONitoring Framework
for Fun and Memory Management Optimizations.
https://www.linuxplumbersconf.org/event/
7/contributions/659/attachments/503/1195/
damon_ksummit_2020.pdf.

[4] Gen-Z. https://genzconsortium.org/.

[5] Idle page tracking-based working set estimation. https:
//lwn.net/Articles/460762/.

[6] OpenCAPI. https://opencapi.org/.

[7] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and
I. Zhang. Treehouse: A case for carbon-aware datacenter
software. In HotCarbon, 2022.

[8] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking software
runtimes for disaggregated memory. In ASPLOS, 2021.

[9] N. Jones. How to stop data centres from gobbling up
the world’s electricity. Nature, 561:163–166, 2018.

[10] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee. MIND: In-network memory manage-
ment for disaggregated data centers. In SOSP, 2021.

[11] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agar-
wal, P. Bhattacharya, C. Petersen, M. Chowdhury,
S. Kanaujia, and P. Chauhan. TPP: Transparent page
placement for CXL-enabled tiered-memory. In ASPLOS,
2023.

[12] B. Nitzberg and V. Lo. Distributed shared memory: A
survey of issues and algorithms. Computer, 24(8):52–60,
1991.

[13] F. Pearce. Energy hogs: Can world’s huge data centers
be made more efficient? Yale Environment, 2018.

[14] Z. Ruan, S. J. Park, M. K. Aguilera, A. Belay, and
M. Schwarzkopf. Nu: Achieving microsecond-scale
resource fungibility with logical processes. In NSDI,
2023.

[15] Vladimir Davydov. Idle Memory Tracking. https:
//lwn.net/Articles/639341/.

[16] J. You, J. Wu, X. Jin, and M. Chowdhury. Ship compute
or ship data? why not both? In NSDI, 2021.

[17] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and
X. Jin. NetLock: Fast, centralized lock management
using programmable switches. In SIGCOMM, 2020.

[18] W. Zhao and J. Ning. Project Tioga Pass Rev
0.30 : Facebook Server Intel Motherboard V4.0
Spec. https://www.opencompute.org/documents/
facebook-server-intel-motherboard-v40-spec.

https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://genzconsortium.org/
https://lwn.net/Articles/460762/
https://lwn.net/Articles/460762/
https://opencapi.org/
https://lwn.net/Articles/639341/
https://lwn.net/Articles/639341/
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec

	Cache-Coherent Interconnects
	CXL-Disaggregated Memory at Rack-Scale and Beyond: Open Challenges
	Abstractions
	Management and Runtime
	Allocation Policies
	Rack-Level Objectives

	Conclusion

