
128-bit Addresses for the Masses
(of Memory and Devices)

Mathieu Bacou1, Adam Chader1, Chandana Deshpande2, Christian Fabre3, César Fuguet3,
Pierre Michaud4, Arthur Perais2, Frédéric Pétrot2, Gaël Thomas1, Eduardo Tomasi2,3 *

1Télécom SudParis, IP Paris 2Univ. Grenoble Alpes, CNRS, Grenoble INP†, TIMA 3Univ. Grenoble Alpes, CEA, List 4Inria, Univ. Rennes, CNRS, IRISA

Abstract—The ever growing storage and memory needs in
computer infrastructures makes 128-bit addresses a possible
long-term solution to access vast swaths of data uniformly. In
this abstract, we give our thoughts regarding what this would
entail from a hardware/software perspective.

I. INTRODUCTION & MOTIVATION

Given the pace at which data is produced and stored in data-
centers worldwide, the amount of physical memory installed
within the machines that have to answer users requests in
the blink of an eye might well need more than 64 bits to
be addressed in a foreseeable future [1]. In the same vein,
the amount of memory available in supercomputers grows
regularly, e.g. Frontier, the first exaflop computer, aggregates
9.2 petabytes of memory for a total storage capacity of
716 petabytes [2]. Should all these data be exposed through
the load/store memory interface (e.g., byte addressable disks),
this would amount to needing 60-bit physical addresses. This
trend is also exemplified by Intel, who increased physical
addressing bits from 46 to 52 (and virtual ones from 48 to
57) [3, 4]. Although we do not yet require 65 bits, if there is
anything we learned from the move from 32- to 64-bit, it is that
starting early is key [5]. Indeed, as advocated by Waterman
et al. [6] when defining the 128-bit RISC-V instruction set
architecture, relying on ad-hoc address extensions hacks again
(e.g. Intel PAE [5]) is only going to be an operating system
nightmare that will eventually disappear. We should rather
consider directly moving to 128-bit.

Moving to 128-bit poses some interesting challenges. Going
bottom-up, this first means that the general purpose registers
of the processors as well as many internal buffers will grow
to 128-bit. During the 32 to 64-bit transition, Moore’s law
quickly absorbed the increase in hardware complexity caused
by the change. Unfortunately, the transition from 64 to 128
bit will happen in a very different context where Moore’s
law has dramatically slowed down and Dennard’s scaling has
long stopped [7]. Nevertheless, processor hardware is only the
tip of the iceberg, and the whole hardware groundworks and
software stacks will need to be looked at from a different angle
given the change in perspective this brings.

Indeed, cloud and high-performance infrastructures have
evolved to become distributed and heterogeneous systems:

*Alphabetical order. Funded by ANR project Maplurinum (ANR-21-CE25-
0016). Corresp.: arthur.perais@univ-grenoble-alpes.fr

†Institute of Engineering Univ. Grenoble Alpes

one machine now includes several CPU sockets intercon-
nected to multiple local memory banks through complex Non-
Uniform Memory Access (NUMA) networks. Each socket
is itself a complex system with an integrated network-on-
chip interconnecting the cores and many levels of caches.
In addition, the storage system is a complex stack of layers
with variable performance characteristics and features. To top
it all off, each computer contains heterogeneous accelerators
dedicated to specific workloads: GPUs, FPGAs, SmartNICs,
TPUs, Variable Precision FPUs, etc.

Meanwhile, the system software remains a stack of com-
peting layers, each based on tweaked generic heuristics and
concepts that try to manage the same hardware resources and
system objects. For example, data-centers use a virtualization
stack made of a Linux kernel-based virtual machine (VM), on
top of a QEMU/KVM (Linux kernel)-based hypervisor, all in
an attempt to handle the distribution and the heterogeneity.
To handle the hardware and software diversity, Linux has
grown to 20 millions lines of code; and despite this large code
base, the kernel does still not provide adequate abstractions for
modern hardware. As a result, many libraries turn to bypassing
the operating system (OS), for performance reasons and to
provide more adequate abstractions to the users. Given this,
our conclusion is that the situation is not sustainable in the
long term.

In this abstract, we give our views on a way to address the
challenges and opportunities that a 64- to 128-bit transition
brings into large scale software-centric system infrastructures.

II. HARDWARE PERSPECTIVE

Considering 128-bit addresses is bound to put additional
pressure on actual hardware, at the very least because buses
on which virtual address travel will become wider.

A. Efficient 128-bit Microarchitecture

Naively doubling the width of datapaths, registers and
functional units will incur significant power, area and latency
overheads [8]. Combined to the doubled footprint of pointers
in memory, the transition to 128-bit is likely to undermine
performance rather than improve it, at least from the processor
perspective. Our intuition is that most 128-bit computation will
be address calculation rather than “regular” integer arithmetic.
Therefore, we envision a clustered microarchitecture [9] with
a 64-bit cluster where 32- and 64-bit integer arithmetic will be
performed, and a 128-bit cluster where address calculation and

mailto:arthur.perais@univ-grenoble-alpes.fr


128-bit arithmetic will be performed. This divide & conquer
approach exposes full 128-bit support to software with limited
hardware investment in the processor backend. A key difficulty
will be to identify 32- and 64-bit instructions that participate
in address calculation and steer them to the address cluster, as
inter-cluster communication generally incurs latency [9].

Distinguishing addresses from integer in the microarchitec-
ture also enables compression of internal processor structures
that store addresses. Indeed, if the address cluster mostly
manipulates addresses, we can expect higher value locality
than if both addresses and “regular” integer were stored. By
mapping high order bits of addresses to a limited number of
region identifiers in a dedicated hardware mapping table [10],
any structure manipulating addresses (e.g., address cluster
Physical Register File, Branch Target Buffer tags and targets,
VIVT cache tags, TLB tags) can be heavily compressed, at the
cost of an indirection to regenerate the full 128-bit address.

B. Memory Hierarchy

Dealing with the NUMA effects is one of the most important
challenges with 128-bit addressable space. Indeed, highly
heterogeneous supercomputers and datacenters will implement
multi-level cache-hierarchies with multiple distributed memory
banks at the chip level to increase memory bandwidth. These
memory banks are physically distributed but logically shared,
that is, any device in the system can access any memory bank.
However, the access latency depends on the physical distance
between the device and the target memory bank, which is
exacerbated with multi-socket and multi-board systems. A
possible solution for reducing NUMA effects is to place code
and data near the devices needing it. Unfortunately, correctly
placing memory objects is hard when they are shared by
multiple devices that are physically far from one another.
While the OS can replicate code and data segments and put
copies near the devices, this leads to yet another issue: the
management of the copies. Data coherency and consistency
must be guaranteed in case of multi-write and multi-read data.
For example, CXL protocols [11] ensure cache coherency
between a machine’s devices, enabling extremely efficient
direct accesses to memory-mapped registers. We envision OS-
driven hardware mechanisms to ease both the replication and
management of copies, for example by allowing the OS to
dynamically define the cache coherency between devices.

III. SOFTWARE & SYSTEM PERSPECTIVE

Our opinion is that the OS currently needs a redesign to
handle the challenges of heterogeneity and disaggregation of
the rack. This redesign can piggy-back on the –arguably–
inevitable 64- to 128-bit transition.

Indeed, we advocate for redesigning the OS as a multi-
kernel, centered around a large unified address space, and
supported by RISC-V as a common minimal instruction set.

A. Multi-kernel

A multi-kernel is a distributed system: each processing unit
runs a kernel, and they collaborate to execute processes that

run on the different units. Multi-kernels have already been
proposed [12, 13], but they only took into account plain
homogeneous CPUs. They also limited themselves to one
communication paradigm (message passing).

To expand the scope of previous works, we propose to
revisit the concept of satellites: each heterogeneous device
and accelerator is equipped with an optimized CPU solely
dedicated to the operations of the control plane. By doing so,
devices and accelerators can be seen as homogeneous pro-
cessing units that are active in the disaggregated system. The
common minimal instruction set and hardware virtualization
will help in implementing satellite kernels that communicate
efficiently via a unified 128-bits address space.

B. Unified address space

In the context of a disaggregated rack, the multi-kernel is a
controller that grants access to different hardware resources to
user tasks. We want to revisit the classic kernel interfaces and
abstractions around the idea of direct access to the data plane,
i.e., the memory. Indeed, all satellites will give out grants for
other satellites to directly map some control structure and data
buffers within their own memory.

This design is in line with the bypassing of the control plane
to optimize data plane-related operations. This is also a way to
homogenize the low-level interfaces of the kernel, all through
a unified address space.

C. Tooling

From a more prosaic standpoint, and although most concepts
can and will be demonstrated on 64 bits, we started to modify
tools to support 128-bit software development [14]. Note that
gcc has been supporting the __int128_t/__uint128_t

types for decades, which made the actual work simpler than
expected. Namely, we added preliminary rv128 support:
(1) in QEMU, most of it being upstreamed, with the notable

exception of the elf128 file format we defined and the
16 KiB page tables we advocate for,

(2) in the GNU binutils, in particular the assembler gas, the
linker ld and the debugger gdb,

(3) in the GNU compiler collection gcc, for the C language,
rv128 target only.

The tools are far from being thoroughly tested yet, but are
usable on simple software.

IV. TAKE AWAY

Current software centric infrastructure already supports a
large amount of memory, many different devices for accelera-
tion and storage, and suffers from the NUMA effect. The latter
can only worsen with as compute farms grow, availability of
byte addressable disks increases, and integration of application
specific accelerators becomes widespread. Although it does
not solve the issues at hand per se, a transition to 128-bit
addressing can be leveraged to rethink the whole datacenter
infrastructure stack.



REFERENCES

[1] Matthew Wilcox. “Zettalinux: It’s Not Too Late To
Start”. In: Linux Plumbers Conference. https : / / lpc .
events / event /16 /contributions /1223/. Dublin, Ireland,
Sept. 2022.

[2] Tiffany Trader. Top500: Exascale Is Officially Here with
Debut of Frontier. https://www.hpcwire.com/2022/05/
30/top500-exascale- is-officially-here-with-debut-of-
frontier/. May 2022.

[3] Intel Corporation. 5-Level Paging and 5-Level EPT.
https : / /www.intel .com/content /www/us/en/content -
details/671442/5-level-paging-and-5-level-ept-white-
paper.html?wapkw=5-Level%20Paging. May 2017.

[4] David L. Mulnix. Third Generation Intel® Xeon® Pro-
cessor Scalable Family On Two Socket Platform Techni-
cal Overview. https://www.intel.com/content/www/us/
en/developer/articles/technical/third-generation-xeon-
scalable-family-overview.html. Feb. 2022.

[5] Robert R. Collins. “Paging Extensions for the Pentium
Pro Processor”. In: Dr. Dobb’s Journal Undocumented
Corner (July 1996). http://www.rcollins.org/ddj/Jul96/.

[6] Andrew Waterman et al. The RISC-V instruction set
manual, volume I: User-level ISA, Version 2.0. EECS
Department, UC Berkeley, Tech. Rep. https : / /github.
com/riscv/riscv- isa-manual/releases/tag/isa-449cd0c.
2023.

[7] John L. Hennessy and David A. Patterson. “A new
golden age for computer architecture”. In: Communi-
cations of the ACM 62.2 (Jan. 2019), pp. 48–60.

[8] Victor Zyuban and Peter Kogge. “The Energy Com-
plexity of Register Files”. In: Proc. of the international
symposium on Low power electronics and design. 1998,
pp. 305–310.

[9] Richard E Kessler. “The alpha 21264 microprocessor”.
In: IEEE micro (1999), pp. 24–36.

[10] André Seznec. “Don’t use the page number, but a
pointer to it”. In: Proc. of the International Symposium
on Computer Architecture. Vol. 24. 2. 1996, pp. 104–
113.

[11] CXL Consortium. Compute Express Link: The Break-
through CPU-to-Device Interconnect. https : / / www .
computeexpresslink.org/. 2020.

[12] Andrew Baumann et al. “The Multikernel: A New
OS Architecture for Scalable Multicore Systems”. In:
Proc. of Symposium on Operating Systems Principles.
Oct. 11–14, 2009, pp. 29–44.

[13] Edmund B. Nightingale et al. “Helios: Heterogeneous
Multiprocessing with Satellite Kernels”. In: Proc. of
Symposium on Operating Systems Principles). Oct. 11–
14, 2009, pp. 221–234.

[14] Frédéric Pétrot, Sylvain Nory, and Juan Jose Garcia
Duarte. riscv-gnu-toolchain supporting the 128-bit ex-
tension. https://github.com/fpetrot/riscv-gnu-toolchain.
Aug. 2022.

https://lpc.events/event/16/contributions/1223/
https://lpc.events/event/16/contributions/1223/
https://www.hpcwire.com/2022/05/30/top500-exascale-is-officially-here-with-debut-of-frontier/
https://www.hpcwire.com/2022/05/30/top500-exascale-is-officially-here-with-debut-of-frontier/
https://www.hpcwire.com/2022/05/30/top500-exascale-is-officially-here-with-debut-of-frontier/
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html?wapkw=5-Level%20Paging
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html?wapkw=5-Level%20Paging
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html?wapkw=5-Level%20Paging
https://www.intel.com/content/www/us/en/developer/articles/technical/third-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/third-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/third-generation-xeon-scalable-family-overview.html
http://www.rcollins.org/ddj/Jul96/
https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c
https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://github.com/fpetrot/riscv-gnu-toolchain

	Introduction & Motivation
	Hardware Perspective
	Efficient 128-bit Microarchitecture
	Memory Hierarchy

	Software & System Perspective
	Multi-kernel
	Unified address space
	Tooling

	Take Away

