
Hardware-Assisted Virtualization for Neural Processing Units
Yuqi Xue

University of Illinois Urbana-Champaign
Yiqi Liu

University of Illinois Urbana-Champaign

Lifeng Nai
Google

Jian Huang
University of Illinois Urbana-Champaign

ABSTRACT
Modern cloud platforms have deployed neural processing units
(NPUs) to meet the increasing demand for machine learning (ML)
services. However, the current way of using NPUs in cloud plat-
forms suffers from either low resource utilization or poor isolation
between multi-tenant application services due to the lack of system
virtualization support for fine-grained resource sharing.

In this paper, we investigate the system virtualization techniques
for NPUs across the entire hardware and software stack. In the
hardware stack, we design a hardware-assisted multi-tenant NPU for
fine-grained resource sharing and isolation. It employs an operator
scheduler on the NPU core to enable concurrent operator executions
and flexible priority-based resource scheduling. In the software stack,
we propose a flexible vNPU abstraction. We leverage this abstraction
to design the vNPU allocation, mapping, and scheduling policies to
maximize resource utilization while guaranteeing both performance
and security isolation for vNPU instances at runtime.

1 BACKGROUND AND MOTIVATION
Machine learning (ML) workloads have seen a significant rise in mod-
ern cloud data centers [6, 7, 16, 18, 19]. They have become the foun-
dation of many popular applications. To improve the performance of
these AI applications, cloud platforms have employed neural process-
ing units (NPUs) for deep neural networks (DNNs) [3, 10, 11, 13–15].

A typical NPU design aims to accelerate common operations in
DNN models, such as matrix multiplications and convolutions. An
NPU device is a peripheral board with multiple NPU chips, and each
chip contains multiple NPU cores. Each NPU core usually includes
systolic arrays (SAs) that exploit data reuse patterns of matrix multi-
plication and vector units (VUs) for generic vector operations like
activations and reductions. As NPUs are nowadays the most efficient
accelerators for DNN computations, they are becoming the most
popular accelerators for ML workloads in the cloud [1–4, 13].

The de facto standard in the cloud to offer users NPUs is to exclu-
sively assign one NPU device to one user VM via PCIe pass-through,
preventing other users from sharing the same NPU. This inevitably
leads to underutilized hardware if the single ML workload cannot
fully utilize the NPU. To better utilize NPUs, modern cloud platforms
implement limited virtualization supports for NPUs. They enable
the time-sharing of an NPU device at the task level and the task
preemption to allocate the NPU to prioritized users [8, 9]. How-
ever, this coarse-grained time-multiplexing on a single NPU board
still suffers significant resource underutilization, because it does not
support the concurrent execution of multi-tenant DNN workloads
or the fine-grained resource allocation on NPU cores. They cannot
leverage multi-tenant workloads to improve utilization, and none of
the sharing mechanisms provide sufficient security or performance
isolation in a multi-tenant cloud environment.

To understand NPU utilization in the cloud, we thoroughly in-
vestigate a real Google Cloud TPUv2 and test various DNN work-
loads [5, 17]. Inside the TPU core, we profile the resource utilization
of its main components: the SA and the VU. We find that most
DNN inference workloads significantly underutilize the compute
resources on the TPU core. The reason is that many DNN inference

BERT
DLRM

EfficientNet

Mask-RCNN
MNIST NCF

ResNet

ResNet-RS

RetinaNet

ShapeMask

Transformer
0.001

0.01
0.1

1
10

100

SA
/V

U
In

te
ns

ity
 R

at
io 1 8 32 128 256 512 1024 2048

Figure 1: Ratio of SA active time vs VU active time. Deeper
colors represent larger batch sizes. Some workloads with large
batch sizes fail due to insufficient memory.

vNPU
Manager

Multi-tenant
NPU

vNPU
Instance

NPU Driver

DMA
Memcpy

Command
Buffer DMA BufferControl

Registers

IOMMU
PCIe
MMIO

Request/Free vNPU
instance (hypercall) User App

Runtime

Fetch
Commands

Guest VM

Compiler

ML Framework

MMIO
Create
vNPU

Manage
Hardware

H
yp

er
vi

so
r

Figure 2: System overview for NPU virtualization.

workloads have imbalanced demands on SAs and VUs, as shown in
Figure 1 — they are either SA-intensive or VU-intensive. As a result,
SA-intensive workloads inevitably underutilize VUs and vice versa.

2 TOWARDS NPU VIRTUALIZATION
We propose a full-stack NPU virtualization solution with hardware-
software co-design as shown in Figure 2. First, we design a hardware-
assisted multi-tenant NPU with fine-grained resource management
for better resource utilization and performance isolation (§2.1). With
the multi-tenant NPU, we propose a flexible vNPU abstraction and
the system support for efficient NPU virtualization (§2.2).

2.1 Hardware-Assisted NPU Multi-tenancy
We develop V10, a hardware-assisted multi-tenant NPU [21]. It en-
ables fine-grained concurrent execution of ML workloads with an
operator scheduler in the NPU, which exploits the idle cycles caused
by the imbalanced use of SAs and VUs in an ML kernel and enables
concurrent execution of operators from different ML workloads.
Tensor Operator Scheduler. Figure 3 shows the architecture of the
operator scheduler. It is located at the front end of the NPU pipeline,
between the instruction memory and the functional units (FUs) such
as SAs and VUs, to control the instruction fetch and issue logic. It
selects independent operators from different DNN workloads and
dispatches them to multiple FUs. The scheduler minimizes hard-
ware modifications by leveraging the existing hardware capability
to dispatch SA and VU operations in parallel.

The scheduler maintains a workload context table to track the exe-
cution states of eachworkload and their operators. The priority-based
scheduling policy uses the context table to decide which operator will
be executed next. Periodically, a preemption timer will trigger the
scheduler to examine whether an operator should be preempted. If
so, the preemption module generates instructions to save the context
for the preempted operator. Once an operator starts execution, it will

1



Preemption
Module

issue instructions to Systolic Arrays and Vector Units

DMA with
Off-Chip

HBM

PC

Preemption
Timer

D
ec

od
e

...

Priority-based
Scheduling Policy

In
st

ru
ct

io
n

M
em

or
y

IQueue

Workload
Context Table

Operator Scheduler

Figure 3: Architecture of the tensor operator scheduler.

occupy an FU until it finishes or is preempted. Then, the scheduling
policy will be invoked to assign the next operator to the free FU.
Priority-based Operator Scheduling. V10’s hardware scheduler
offers the flexibility for enforcing different priorities to satisfy differ-
ent service-level agreements (SLAs) for ML services. The scheduler
guarantees that a workload should spend computation cycles pro-
portional to its relative priority [12]. The scheduler will prioritize
the workload that currently suffers from the lowest share of re-
sources with respect to its priority. With this scheduling policy, V10
dynamically controls the resource allocation to each workload.
Tensor Operator Preemption. Since the sizes of tensor operators
vary, different operators require different amounts of hardware re-
sources, which causes unfairness and starvation. For example, large
operators will block small operators of the collocated ML workload.
This not only causes unfairness but also limits potential opportuni-
ties for overlapping the execution of SA and VU.

We propose a lightweight operator preemption mechanism for
NPUs. Instead of re-executing the entire operator after a context
switch, we enable low-overhead recomputation for the SA by asyn-
chronously checkpointing input data and overlapping the switching
of two operators. At the cycle when preemption is invoked, we
keep the SA running while saving all further inputs into the on-chip
SRAM. No cycles are wasted so far as the SA is still popping valid out-
puts. After all partial sums depending on earlier inputs are popped,
we pause the execution. Then, we save the data of the preempted
operator and simultaneously start restoring the data of the next op-
erator into the SA. With our approach, the context switch overhead
is negligible compared to the average operator length. The storage
overhead is also trivial compared to the on-chip SRAM capacity.

2.2 System Support for NPU Virtualization
Based on the hardware-assisted multi-tenant NPU, we propose Neu-
Cloud, a full-stack NPU virtualization solution with fine-grained
hardware resource management with the vNPU abstraction [20].
vNPU Abstraction. For optimal resource efficiency, we must allo-
cate different numbers of SAs and VUs to a DNN workload based on
its demands. The vNPU abstraction must provide flexibility for the
user to customize a vNPU. To minimize changes to guest software
stacks, a vNPU has the same structure as a physical NPU board.

As Figure 4(a) shows, a vNPU can encapsulate different resource
configurations, and a physical NPU board can host multiple vNPU
instances with different configurations. A vNPU can be collocated
with other vNPUs on the same NPU core if the total number of SAs
and VUs does not exceed hardware limitations. If the DNN work-
load requires more resources than is available on one core, vNPUs
occupying an entire chip or more can be created. The maximum size
of one vNPU is capped by the real physical hardware. If a guest VM
requires more resources than is available on a physical NPU board,
NeuCloud can allocate multiple vNPUs to it.

A vNPU can also customize its in-core SRAM size and HBM size.
As shown in Figure 4(b), the SRAM is evenly divided into 8 slices and

vNPU_3 vNPU_4 vNPU_5

NPU Board

NPU
Chip

NPU Core

vNPU_0

SA

vNPU_1 vNPU_2

VU

NPU
Chip

NPU
Chip

NPU
Chip

SA VU

SA VU

SA VU

vNPU_3

vNPU_4

HBM
(8x2GB slices)

SRAM
(8x2MB slices)

vNPU_5

4MB 6MB 6MB

vNPU_4 vNPU_5 vNPU_3
4GB 4GB 8GB

(a) Abstraction of NPU compute resources.

(b) Abstraction of memory resources of a single NPU core.

Figure 4: vNPU abstraction.

allocated at 2MB granularity. By default, a 2MB slice will be allocated
to each of the vNPU’s EU, since the SRAM is used as a buffer to hide
HBM latencies and should be large enough to match the compute
throughput of the EUs. The off-chip HBM is also allocated in slices.

A vNPU instance reflects the hierarchy of a physical NPU board
to minimize changes to existing compiler/driver stacks. Each vNPU
is exposed to the guest VM as a PCIe device that resembles an NPU
board. The guest NPU driver can query the hierarchy of the emulated
vNPU, such as the number of chips, cores per chip, etc. The guest
ML framework can handle data distribution according to the vNPU
configuration, the same as how it handles a bare-metal NPU board.
vNPU Lifecycle. Before creating the vNPU instance, 1) the user
specifies how many NPU cores it needs and the core size. The cloud
service provider can also define some presets of vNPU configurations.
2) Upon vNPU initialization, the guest driver sends a request to
the hypervisor through a para-virtualized interface. 3) The vNPU
manager finds a piece of NPU hardware to allocate the vNPU instance
and creates the MMIO mappings for the guest VM to access the
vNPU. 4) During execution, the user application issues memcpy
and compute offload commands through the command buffer. The
NPU hardware directly fetches and executes the commands from
the host memory without hypervisor intervention and accesses the
guest memory space via the IOMMU. The guest VM can wait for the
command completion interrupt or actively poll the control registers
for the current status of the vNPU instance.
vNPU Mapping. NeuCloud leverages V10’s priority-based schedul-
ing policy to map multiple vNPUs to the same physical NPU core at
fine granularity. The user first chooses a vNPU configuration that
satisfies the SLOs. Then, the priority of this vNPU is set by the ex-
pected resource consumption of the vNPU on a physical NPU core,
based on the temporal utilization of each FU. For example, if the
vNPU has 4 FUs and the average FU utilization is 50%, this vNPU is
expected to consume 200%/800% = 25% of resources on a physical
NPU core with 8 FUs. NeuCloud leverages the SA/VU intensity of
the targeted DNN workload to estimate the FU utilization of the
vNPU. At runtime, V10’s operator scheduler treats all SAs/VUs as
a single large SA/VU and time-multiplexes multiple operators on
all FUs. The priority setting described above provides a convenient
way to map vNPU instances to V10’s NPU cores.

3 CONCLUSION AND FUTUREWORK
We identify resource underutilization of NPUs in the cloud and
propose NPU virtualization. We identify key challenges of virtualiz-
ing NPUs, such as the need for fine-grained resource management
and isolation between vNPUs. We propose a hardware-software co-
design for efficient NPU virtualization, which improves both resource
utilization and performance isolation in a multi-tenant cloud. As
future work, we plan to develop a full system prototype of NeuCloud
and integrate it into the open-source container platforms.

2



REFERENCES
[1] 2019. Alibaba Unveils AI Chip to Enhance Cloud Computing Power.

https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-
cloud-computing-power_595409

[2] 2019. HUAWEI CLOUD Enables More Intelligence with Its AI Chips. https:
//www.huaweicloud.com/intl/en-us/cloudplus/thirdphase/detail_12.html

[3] 2023. AWS Inferentia. https://aws.amazon.com/machine-learning/inferentia/
[4] 2023. Graphcloud: Cloud-based Machine Intelligence. https://www.graphcore.ai/

graphcloud
[5] 2023. Supported reference models. https://cloud.google.com/tpu/docs/tutorials/

supported-models
[6] Altexsoft. 2021. Comparing Machine Learning as a Service: Amazon, Microsoft

Azure, Google Cloud AI, IBM Watson. https://www.altexsoft.com/blog/
datascience/comparing-machine-learning-as-a-service-amazon-microsoft-
azure-google-cloud-ai-ibm-watson/

[7] Amazon AWS. 2022. Machine Learning on AWS Innovate faster with the most
comprehensive set of AI and ML services. https://aws.amazon.com/machine-
learning/

[8] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Accelera-
tors to Improve Utilization in Warehouse-Scale Computers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’17). Xi’an, China.

[9] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators in Ware-
house Scale Computers. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’16). Atlanta, Georgia, USA.

[10] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14). Salt Lake City, UT.

[11] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, ToddMassengil, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Christian Boehn, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi,
Stephen Heil, Kyle Holohan, Tamas Juhasz, Ratna Kumar Kovvuri, Sitaram Lanka,
Friedel van Megen, Dima Mukhortov, Prerak Patel, Steve Reinhardt, Adam Sapek,

Raja Seera, Balaji Sridharan, Lisa Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug
Burger. 2017. Accelerating Persistent Neural Networks at Datacenter Scale. In
Proceedings of HotChips’17. Cupertino, CA.

[12] Stijn Eyerman and Lieven Eeckhout. 2008. System-Level Performance Metrics for
Multiprogram Workloads. IEEE Micro 28, 3 (2008), 42–53. https://doi.org/10.1109/
MM.2008.44

[13] Google. 2022. System Architecture - Cloud TPU. https://cloud.google.com/tpu/
docs/system-architecture-tpu-vm

[14] Graphcore. 2022. Graphcore IPU Overview. https://www.graphcore.ai/products/
ipu

[15] Linley Gwennap. 2020. Tenstorrent Scales AI Performance: New Multicore Archi-
tecture Leads in Data-Center Power Efficiency. https://www.linleygroup.com/
mpr/article.php?id=12287

[16] Ejiro Onose. 2022. Machine Learning as a Service: What It Is, When to Use It and
What Are the Best Tools Out There. https://neptune.ai/blog/machine-learning-
as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there

[17] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng,
Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Id-
gunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery
Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira,
Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu,
Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang,
and Yuchen Zhou. 2019. MLPerf Inference Benchmarks. arXiv 1911.02549 (2019).

[18] RUN:AI. 2022. Google TPU Architecture and Performance Best Practices. https:
//www.run.ai/guides/cloud-deep-learning/google-tpu

[19] Alexander Spiridonov. 2021. New Cloud TPU VMs make training your ML models
on TPUs easier than ever. https://cloud.google.com/blog/products/compute/
introducing-cloud-tpu-vms

[20] Yuqi Xue, Yiqi Liu, and Jian Huang. 2023. System Virtualization for Neural Pro-
cessing Units. In The 19th Workshop on Hot Topics in Operating Systems (HotOS
’23). https://doi.org/10.1145/3593856.3595912

[21] Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10: Hardware-Assisted
NPU Multi-tenancy for Improved Resource Utilization and Fairness. In ISCA-
50: 50th International Symposium on Computer Architecture (ISCA ’23). https:
//doi.org/10.1145/3579371.3589089

3

https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://www.huaweicloud.com/intl/en-us/cloudplus/thirdphase/detail_12.html
https://www.huaweicloud.com/intl/en-us/cloudplus/thirdphase/detail_12.html
https://aws.amazon.com/machine-learning/inferentia/
https://www.graphcore.ai/graphcloud
https://www.graphcore.ai/graphcloud
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://doi.org/10.1109/MM.2008.44
https://doi.org/10.1109/MM.2008.44
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://www.linleygroup.com/mpr/article.php?id=12287
https://www.linleygroup.com/mpr/article.php?id=12287
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://www.run.ai/guides/cloud-deep-learning/google-tpu
https://www.run.ai/guides/cloud-deep-learning/google-tpu
https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms
https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms
https://doi.org/10.1145/3593856.3595912
https://doi.org/10.1145/3579371.3589089
https://doi.org/10.1145/3579371.3589089

	Abstract
	1 Background and Motivation
	2 Towards NPU virtualization
	2.1 Hardware-Assisted NPU Multi-tenancy
	2.2 System Support for NPU Virtualization

	3 Conclusion and Future Work
	References

