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ABSTRACT
Modern data-driven applications (such as AI training, Inference)
are powered by Artificial Intelligence (AI) infrastructure. AI in-
frastructure is often available as bare-metal machines (BMs) in
on-premise clusters but as virtual machines (VMs) in most public
clouds. Why is this dichotomy of BMs on-prem and VMs in public
clouds? What would it take to deploy VMs on AI Systems while de-
livering baremetal-equivalent performance? We will answer these
questions based on experiences building and operationalizing a
large-scale AI system called Vela in IBM Cloud. Vela is built on
open-source Linux KVM and QEMU technologies where we are
able to deliver near-baremetal (within 5% of BM) performance inside
VMs. VM-based AI infrastructure not only affords BM performance
but also provides cloud characteristics such as elasticity and flexi-
bility in infrastructure management.

1 WHY THE DICHOTOMY OF BMS ON-PREM
AND VMS IN CLOUD?

Traditionally high-performance computing (HPC) systems [12, 13]
are built with Baremetal Metal compute nodes, high performance
networking and distributed file systems. HPC systems happen to
perform very well for AI workloads, as a result baremetal systems
are used on-prem for AI. In addition, on-prem hardware tends to be
very static, typically booted once, made part of an HPC scheduler
and end users simply submit jobs to systems that may run for days
and months on end. The system and software stack is fixed by the
system administrators, and it is only updated on scheduled time
windows in the order of months to years. As a result, BM is perfectly
sufficient for on-prem private clusters.

On the other hand, cloud systems [1–4] started with virtual
machines for general purpose computing and started offering AI ca-
pabilities using the same VMs. In addition, public cloud AI systems
are used in a very dynamic way. They are often provisioned and re-
provisioned to different customers potentially multiple times a day.
Customers require the ability to customize the systems software
(including the operating system) and the user software (such as
TensorFlow, Pytorch, CUDA) to meet the needs of their developers.
For this reason, cloud providers use VM as a deployment unit and
deploy fresh VMs across customer allocations. This provides cloud
providers the flexibility to keep the bare-metal up like a private
cluster but dynamically provision required software stacks to cus-
tomers quickly. Customers can also scale-up and scale-down their
AI clusters based on their workload requirements.

In summary, this dichotomy comes from the evolution of on-
prem and Cloud systems and their usage patterns. The next key
question is what would it take to expose AI capabilities using virtual
machines?

Figure 1: Compute node architecture of a typical AI System

2 HOW TO ENABLE AI INFRASTRUCTURE IN
VIRTUAL MACHINES?

We set out to investigate how to enable AI infrastructure with
Linux KVM. We hypothesize that configuring virtual machines
with GPU and network-virtual-functions passthrough with KVM
can significantly enhance the performance of AI training workloads.
PCIe device passthrough enables virtual machines (VMs) to directly
access the physical devices installed on the host system. As a result,
applications running inside VMs can take advantage of the full
power of devices like GPUs and enable performant execution of
applications such as gaming, CAD, and machine learning.

However, as shown in Figure 1, modern AI compute nodes tend
to have complex intra-node topology with multiple pci-e switches
connecting GPUs, network cards, and CPUs and thus can be in-
tricate to virtualize. Moreover, when virtualizing such a compute
node, we noticed that the out-of-the-box system deployment re-
sults in poor AI workload performance and network performance
(see Figure 2 VM Default columns). We provisioned and compared
KVM-QEMU-based VMs for Transmission Control Protocol (TCP),
RDMA over Converged Ethernet (RoCE), and GPU Direct RoCE
communication models with default configuration and optimized
configuration. The optimized configuration achieves 2-10x improve-
ment in network performance over the default configuration (Figure
2).

Enabling a performant VM-based execution environment for
AI workloads required configuration changes at different system
layers [8]. Specific optimizations were made in

• the system BIOS (enable IOMMU, ACS, and SRIOV support),
• the network adapter (disable relaxed PCI ordering, increase
maximum accumulative outstanding read bytes, and enable
selective repeat, direct access to ATS from the NIC to GPU
buffers using PCIe peer-to-peer transactions, and ATS),
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Figure 2: Performance tuning significantly improves
all_reduce_perf throughput

Figure 3: Acceptable virtualization overhead for NMT-12
two-node training job

• the hypervisor (enable NVFs, huge pages, ACS on the PCI
controllers, and ATS on the NVFs, and increase maximum
PCI read request size to 4KB),

• the guest XML (enable huge pages, NUMA domains, Device-
NUMA mapping, host-physical-bit model for large memory
VMs, and ATS on PCI controllers), and

• the guest operating system (increase maximum PCI read
request size to 4KB) configurations.

For evaluating these optimizations, we use two compute nodes
each with 8-NVIDIA A100-80GB GPUs and 4-Mellanox-CX-6Dx
Dual Port cards (i.e., 800 Gbps aggregate b/w), with the hypervisor
and guest running Ubuntu 20.04 (with Linux 5.4) operating system,
and the latest software stack from NVIDIA and Mellanox.

We ran the NMT-12 [9] model training job on single-node in VM
and BM with the same configuration to demonstrate the virtual-
ization overhead on real-world applications. The result shows that
we can achieve 147K words-per-second (WPS) on BM and 140K
WPS inside the VM, i.e., a virtualization overhead of about 5%. We
also evaluated BM and VM performance with Cuda Samples [5]
(bandwidthtest, conjugrategradient, eigentxt, matrixmul, mergesort,
p2pbandwidthlatency, simplemultigpu, simplep2p, traspose, uni-
fiedmemoryperf), BERT-Large [6], MegaTron [11], and T5 11B [10],
and the overhead of VM is less than 0% to a maximum of 5%. Less
than 0% meaning that VM execution is faster and this is due to

configurations such as large pages typically set for VMs as default
but not in BM.

For distributed AI training workloads, the network virtualization
must be performant. To benchmark the network performance, we
executed all_reduce_perf from nccl-tests (a micro-benchmark
suite provided by NVIDIA) to evaluate the network performance
with TCP, RoCE, and NVIDIA GPUDirect RoCE protocols. Figure 2
shows that the optimizations/changeswe applied at different system
layers improved the network performance significantly. We also
executed the distributed NMT-12 model training job to get an initial
understanding. The result in Figure 3 demonstrates that we can
achieve similar performance in VM and BM environments. We also
tested a few other distributed AI training jobs, and the performance
loss is less than 5% in general.

3 CONCLUSION
In this paper, we explained the reasons for BM on-prem and VMs in
public cloud for AI infrastructure. For the first time, we explained
the optimizations to enable AI infrastructure as VMs with open-
source Linux KVM and achieve near-baremetal performance for
micro-benchmarks and real applications. This techniques are part
of Vela [7], our cloud native supercomputer inside IBM public cloud.
We hope that practitioners will leverage these techniques and build
AI systems with virtualization to bring the agility of cloud to on-
prem AI infrastructure.
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