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Abstract
The next generation network employs virtualization to create
on-demand virtual networks called network slices, ensuring
different service categories meet their quality of service re-
quirements. This, along with offloading schemes, requires
small-scale data centers near radio base stations known as
edge computing. These edge systems must effectively auto-
scale computing servers to handle fluctuating workloads.
Radio access network (RAN) slicing involves containerized
radio applications with compute-intensive functions at the
physical and radio link control layers, imposing strict pro-
cessing time requirements. To address delay-sensitive radio
workloads, we propose a fine-grained autoscaling solution in
the edge cloud. Our analytical approach dynamically tunes
resource limits using stochastic decision processes to meet
dynamic demands. Evaluations compare user-configured and
soft-tuned resource limits, utilizing the Roofline model and
Low Density Parity Check (LDPC) decoding algorithm for
workload characterization. We establish processing time de-
sign constraints and discuss limitations and future research.

CCS Concepts: • Networks → Network design princi-
ples; Network slicing; •Computer systems organization
→Cloud computing; Edge computing; • Theory of com-
putation→ Integer programming; Stochastic optimization.
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1 Introduction
Cloud computing has emerged as a computing warehouse
for diverse workloads. Unlike core cloud systems, edge com-
puting addresses the need for offloading wireless traffic to
servers situated at the edge of the radio access network
(RAN). Edge servers process wireless data and signals in close
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proximity to radio towers. Additionally, next-generation
wireless networks leverages virtualization to create on-demand
virtual networks called network slices, tailored to specific
wireless service categories with distinct quality of service
requirements. To ensure the isolation for RAN slicing, the
edge cloud processes virtualized radio functions within con-
tainers. Furthermore, autoscaling computational resources is
a fundamental concept in cloud computing, allowing for dy-
namic allocation and release of resources based on workload
fluctuations. However, existing autoscaling frameworks in
Kubernetes-like systems have not adequately accounted for
the characteristics of recent edge applications, particularly
those with strict processing time requirements such as RAN
slicing workloads. Current autoscaling approaches involve
launching new containers when the application size exceeds
predefined resource limits, leading to the scaling down of
other containers operating below their configured limits.
However, these methods are unsuitable for RAN slicing con-
tainers due to their narrow processing time requirements
(0.2-25 milliseconds) and the significant time penalties in-
curred during container startup and scaling down operations
(0.5-5 seconds). To circumvent this challenge, it has been
suggested by previous studies [3, 5, 8] to remove resource
limits from the container’s configuration file. However, this
approach proves impractical in resource-constrained edge
computing environments with diverse computational service
demands. In this paper, we propose a fine-grain autoscaling
framework for RAN slicing workloads by dynamically ad-
justing containers’ resource limits based on fluctuations in
their radio workloads. We introduce an analytical framework
that utilizes stochastic decision processes to tune resource
limits, considering the stochastic characteristics of the wire-
less environment and the time-intensive Low Density Parity
Check (LDPC) decoding radio function [1, 2]. We outline the
methods used to prototype our proposed framework, present
preliminary results utilizing the Roofline model and asymp-
totic analysis of the LDPC decoding algorithm to establish
processing time design constraints. Additionally, we discuss
the limitations of our model and provide insights into future
improvements. Finally, we outline the next milestones and
future research avenues in this domain.
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Figure 1. Fine-grain autoscaling framework for radio slices.

2 Methodology
The radio workload experiences rapid fluctuations as it pro-
cesses data transmitted over time-varying stochastic wireless
channels. Despite its unpredictable nature, successful wire-
less system deployment relies on harnessing the stochastic
properties of wireless data. Therefore, we leverage these sto-
chastic properties to dynamically scale edge cloud resources
for RAN slicing workloads. Our system design, illustrated in
Figure 1(a), encompasses three key components: (i) a wireless
traffic generator; (ii) radio containers; and (iii) edge servers.
We generate emulated wireless traffic to simulate real-world
conditions and deploy radio containers at the edge, accom-
panied by a RAN slicing controller that utilizes decision
processes to fine-tune the containers’ resource limits.
To gain insights into the proposed system design, we de-

velop an analytical model for resource control. We choose
the LDPC decoding algorithm1 as a representative case study
for the radio process executed within each container due
to its significant contribution to the execution time of ra-
dio tasks, accounting for approximately 60% of the uplink
execution time [2]. We measure the LDPC’s operational in-
tensity by utilizing the LDPC asymptotic analysis presented
in [6]. Moreover, to reflect the stochastic properties of the
radio workload, we model the fluctuations in the LDPC as a
Gaussian random number (�̃�), which represents the number
of iterations in the LDPC algorithm required to detect and
correct the received messages transmitted over an Additive
White Gaussian wireless channel. Furthermore, we adopt the
Roofline model [10] to address peak performance considera-
tions in the computing architecture, thereby encoding pro-
cessing time through the definition of workload operational
intensity and architecture peak performance, i.e., processing
time 𝜏 =

�̃�.𝐿𝐷𝑃𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑙 .𝑚𝑖𝑛 (𝜋,𝛽𝐴) where 𝑙 is the resource limit variable
that we need to determine, 𝜋 is the processor peak perfor-
mance, 𝛽 is the memory bandwidth, and 𝐴 is the LDPC’s
operational intensity. By integrating these elements, our aim
is to fine-tune the resource limits of containers for RAN
slicing workloads, e.g., LDPC decoding algorithm. In this
context, the problem is formulated as stochastic integer opti-
mization problem where we need to determine the optimum
resource limit 𝑙𝑖 of each container 𝑖 ∈ I to minimize the total
cost 𝑐𝑖 𝑗 of running containers 𝑖 ∈ I that utilize resources
𝑗 ∈ J and guarantee the delay below predefined threshold

1LDPC is multi-threaded, with parallel tasks running on multiple cores.
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Figure 2. S-RC performance with dense input data size 𝐷5

𝛿𝑖 . To determine 𝑙𝑖 , we define a binary decision variable 𝑥𝑖 𝑗
that equals 1 when a resource 𝑗 is assigned to a container
𝑖 and equals 0 otherwise. Thus, 𝑙𝑖 =

∑
𝑗∈J 𝑥𝑖 𝑗 ∀𝑖 ∈ I. Ac-

cordingly, we aim to minimize
∑

𝑖∈I
∑

𝑗∈J 𝑥𝑖 𝑗𝑐𝑖 𝑗 , such that
processing delay 𝜏𝑖 is below threshold 𝛿𝑖 ∀𝑖 ∈ I and total
resource limits below the available resources

∑
𝑖∈I 𝑙𝑖 <= 𝐽 .

3 Preliminary Results
Weapproach the proposed problem using chance-constrained
programming [4]. We conducted approximately 50 simu-
lations to numerically evaluate the proposed optimization
problem, referred to as stochastic resource control (S-RC).We
compared S-RC with RC, where we hard-code the resource
limit by solving the deterministic instance of the proposed
stochastic formulation. We observed that the cost-overhead
of S-RC is slightly higher than RC, as shown in Figure 2(b),
although it satisfies the probabilistic constraint for the pro-
cessing delay requirement, as depicted in Figure 2(a). The
results, illustrated in Figure 2, indicate that the deployment
of S-RC has a high likelihood of effectively auto-scaling the
edge cloud for RAN slicing workloads. However, its deploy-
ment cost is high due to the use of the branch and cut algo-
rithm [7, 11], which guarantees an optimal solution for the
proposed S-RC.
4 Conclusion and Future Work
This research proposes a soft-tuning approach for resource
limits of radio containers at the edge cloud to handle sto-
chastic variations in RAN slicing workloads while meeting
processing time constraints. The stochastic resource con-
troller (S-RC) outperforms the legacy controller (RC) but
incurs a notable overhead cost. Ongoing research focuses on
designing an approximation algorithm to reduce deployment
costs and studying the impact of wireless resource alloca-
tion on S-RC performance. Further development includes an
online (reactive) S-RC algorithm to enhance the adaptabil-
ity and responsiveness of the resource control mechanism.
Central to this development is optimizing the scaling period,
a crucial factor in ensuring the success of the online algo-
rithm. Prototyping and validation will be conducted using a
wireless data traffic generator in an emulated environment,
such as the Colosseum testbed [9]. This research advances
resource management in edge computing for efficient RAN
slicing workloads.
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