
General-purpose processing on AI/ML accelerators ∗

1. INTRODUCTION
Artificial intelligence (AI) and Machine learning (ML)

accelerators are ubiquitous in modern computers to match
the demand of their target workloads. Famous examples in-
clude Google’s Tensor Processing Units (TPUs) [18], Ap-
ple’s Neural Engines [3], and Intel’s Gaussian & Neural
Accelerators (GNAs). Though various in accelerated func-
tions and microarchitectures, these AI/ML accelerators are
essentially matrix processors that perform operations on
matrices. Therefore, another trend in accelerating AI/ML
applications is providing critical mathematical functions,
particularly matrix multiplications, in computer systems.
Emerging industry examples include NVIDIA’s Tensor Core
Units (TCUs) [16], IBM Power 10 MMA units [20], Intel’s
AMX [13] and ARM SME [4].

Beyond the core training and inferencing processes in
AI/ML workloads, a broad spectrum of matrix-based prob-
lems can also benefit from these AI/ML accelerators in the-
ory. In fact, many of these problems are responsible for
providing inputs to AI/ML training/inferencing or serving as
the post-processing steps for AI/ML models. With modern
AI/ML accelerators shifted the most time-consuming part to
non-training/inferencing processes [10] and the significant
under-utilization of AI/ML accelerators [25], democratizing
AI/ML accelerators to accelerate non-training/inferencing
processes becomes critical to improve the overall platform
performance.

In this project, we will present our efforts in democ-
ratizing AI/ML accelerators. The first work is TCUDB
project published in SIGMOD 2022 [12]. In TCUDB,
we demonstrate matrix-based solutions to several frequently
used database query patterns. In addition to transforming
the desired query into matrix operations, TCUDB’s query
engine carefully gauges the value ranges and data intensity
to ensure the quality and performance of results. TCUDB
evaluates three real-world use cases, (1) linear algebra (LA)
queries, (2) entity matching (EM), and (3) graph analytics.
TCUDB demonstrates an outstanding performance advan-
tage over a GPU-based engine by achieving up to 382×
speedup.

The second work is TensorCV. In TensorCV, we revisited
the design of the frequently-used, performance-critical non-
training/inferencing functions in modern AI/ML pipelines.
TensorCV presents matrix/tensor-based algorithms to en-
able the use of AI/ML accelerators in critical image pro-
cessing steps, including rotation, cropping, resizing, nor-
malization, color space conversions. Though these matrix-
based algorithms have potentially higher algorithmic com-
plexity than existing solutions, these algorithms can still
supersede the performance of optimized implementations
on modern general-purpose processors since AI/ML accel-
erators can execute our underlying operations efficiently.
TensorCV shows our algorithms and implementations can
achieve 7.25× speedup over conventional GPU-based im-
plementations on the same architecture.

*The submission is based on SIMD2: A Generalized Matrix In-
struction Set for Accelerating Tensor Computation beyond GEMM.
In The 49th Annual International Symposium on Computer Archi-
tecture (ISCA’22) and TCUDB: Accelerating Database with Tensor
Processors (SIGMOD’22)

2. TCUDB
TCUDB is an analytic database query engine that explores

opportunities of integrating AI/ML accelerators, particularly
Tensor Core Units (TCUs) into a database engine’s architec-
ture. The increasing demand for native support of linear al-
gebra queries (e.g., matrix multiplication itself) in SQL DB
engines [11, 1, 8, 15, 7] and the observation that a large
number of regular query operators can be cast into matrix
multiplications, have made perfect sense to use TCUs for
these database workloads. For example, one can show that
the most commonly used natural joins [2, 6] and group-by
aggregates can be encoded as matrix multiplications and en-
able TCUs to deliver exceptional performance.

Figure 1 provides an overview of the system architecture
of TCUDB. TCUDB extends the common architecture of
GPU-accelerated databases [9, 21, 23, 26, 5, 22, 24, 14, 17,
19] as a way to further accommodate executing query oper-
ators with TCU acceleration in the query analyzer, the query
optimizer, the code generator, and the program driver.

To address the challenge of executing queries using matrix
operations, we re-engineered a set of query operators that
are theoretically feasible to be mapped to tensor/matrix alge-
bra operations for TCUDB. The query operators cover many
commonly used ones, including natural joins and group-by
aggregates. TCUDB also features a code generator for gen-
erating executable code mapping input tables to tensor for-
mat and processes the query as matrix multiplication via
WMMA or cuBLAS API calls. Depending on the data spar-
sity, TCUDB provides the option of sparse tensor encoding
with sparse matrix multiplication. We developed the TCU-
SpMM operator to support sparse matrix multiplication with
TCU acceleration. Then, the TCUDB query analyzer can
generate query plans that use these TCU-accelerated physi-
cal operators.

To resolve the challenge of limited precision and overhead
in modern tensor processors, TCUDB’s query optimizer
carefully gauges the parameters in precision, data movement
overhead, data transformation overhead, and computation
throughput — as using lower data precision yields lower
data movement overhead and higher computation through-
put, but also take higher risks of leading to unacceptable
answers as well as higher data transformation overhead.
TCUDB presents an adaptive mixed-precision query opti-
mization that dynamically selects the most appropriate pre-
cision in delivering the desired level of accuracy using the
shortest end-to-end latency to handle queries.

We demonstrate the significant performance gain of
TCUDB in a range of real-world applications, including
entity matching, graph query processing, and matrix-based
data analytics. Figure 2 presents the experimental result of
running entity matching queries on iTunes-Amazon datasets.
TCUDB achieves up to 288× speedup compared to a base-
line GPU-based query engine (YDB). Please reference the
TCUDB for more results [12].

3. TENSORCV
The non-AL/ML parts of the computer vision pipeline

typically perform operations that help to enhance or extract
the most critical part of images to enable more accurate
and efficient ML results. Unfortunately, the conventional
approach typically relies on CPU code whose performance
can only scale with the relatively slow improvement through

Table Storage

TCUDB

Query
Analyzer

Query
Optimizer

Program
Driver

Code
Generator

SELECT A.Val, B.Val
FROM A, B
WHERE A.ID = B.ID;

wmma_optimized_gemm<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
 SHMEM_SZ>>>(At, Bt, Ct, Ct, M, N, K, 1.0, 0.0));

Figure 1: An overview of TCUDB’s workflow.

 0

 1

 2

 3

 4

 5

 6

 7

 8

P
ri
c
e

 (
M

o
n

e
tD

B
)

P
ri
c
e

 (
Y

D
B

)

P
ri
c
e

 (
T

C
U

D
B

)

G
e

n
re

 (
M

o
n

e
tD

B
)

G
e

n
re

 (
Y

D
B

)

G
e

n
re

 (
T

C
U

D
B

)

T
im

e
 (

M
o

n
e

tD
B

)

T
im

e
 (

Y
D

B
)

T
im

e
 (

T
C

U
D

B
)

A
rt

is
t

(M
o

n
e

tD
B

)

A
rt

is
t

(Y
D

B
)

A
rt

is
t

(T
C

U
D

B
)

C
o

p
y
ri
g

h
t

(M
o

n
e

tD
B

)

C
o

p
y
ri
g

h
t

(Y
D

B
)

C
o

p
y
ri
g

h
t

(T
C

U
D

B
)

A
lb

u
m

 (
M

o
n

e
tD

B
)

A
lb

u
m

 (
Y

D
B

)

A
lb

u
m

 (
T

C
U

D
B

)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
MonetDB

Join+GroupBy (TCUDB)

2
.8

1

1
.0

0

0
.0

0
3

7
.7

1

1
.0

0

0
.2

6

2
.3

4

1
.0

0

0
.0

6

3
.4

6

1
.0

0

0
.0

8 1
.1

6

1
.0

0

0
.3

0

1
.4

9

1
.0

0

0
.4

2

Figure 2: The relative runtime of the EM-blocking
queries on TCUDB using the default deepmatcher-
iTunes-Amazon datasets compared to MonetDB and
YDB running the same query as the baseline.

Moore’s Law, but not the rapid growth from emerging, in-
novative hardware accelerators. The inefficiency of these
ML-adjacent stages will lead to under-utilized hardware ac-
celerators and becomes the performance bottleneck as these
stages cannot feed sufficient inputs to well-optimized ML
models.

TensorCV aims at improving the under-rated performance
issues in frequently used image processing functions in
AI/ML-assisted computer-vision pipelines. Similar to the
philosophy of TCUDB, the most critical task in TensorCV is
revisiting entrenched implementations that optimize for con-
ventional CPU/GPU models and designing algorithms that
use matrix operations. In the following paragraphs, we will
use the “resizing“ function as an example of transforming
from scalar algorithms to matrix-based algorithms.

In the conventional bi-linear resizing implementation,
first, the code computes the relative ratio between input and
output matrix sizes, which we call row and column scales.
Then, the code calculates each output pixel values. How-
ever, this algorithm cannot exploit Tensor Cores since there
is no matrix multiplications.

TensorCV transforms the conventional implementation
into two matrix multiplications. Considering an m-by-3n
input and m′-by-3n′ output images, the proposed algorithm
creates an m′-by-m matrix as Lresize and 3n-by-3n′ matrix as
Rresize. The content of Lresize and Rresize is only related to the
target image’s size; therefore, TensorCV only needs to cre-
ate them once for every batch. In contrast, the conventional
approach prevents the code from using Tensor Cores and re-
calculates weights for the same pixel position in each chan-
nel. The proposed algorithm will fill the content of Lresize

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Resize

Crop
CvtColor

Rotate

Norm
alize

RsCp

RsCpCv

RsCpCvRt

RsCpCvRtNm

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

CPU

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

GPU

3
.1

6

0
.9

2

4
.9

5

1
.8

0 2
.7

3

3
.1

4

3
.3

3

3
.0

3

2
.8

9

TensorCV

5
.7

2

0
.0

6

7
.6

6

2
.1

8

7
.1

1

5
.7

9 6
.8

9 7
.8

2

7
.4

9

Figure 3: Performance of TensorCV compared with
baseline OpenCV implementation using CPUs and GPUs

using the following formula:

Lresize
m×m′ 3 lresize

i, j =

1− rowWeight j if j = topi
rowWeight j if j = boti
0 else

(1)

Rresize holds column-related weights, and the proposed al-
gorithm will fill the content of the matrix using the following
formula:

Rresize
3n×3n′ 3 rresize

i, j =
1− colWeighti if bi/3c= le f ti

and i%3 = j%3

colWeighti if bi/3c= righti
and i%3 = j%3

0 else

(2)

After filling matrices Lresize and Rresize using Equation 1
and 2 at the beginning of each batch of images, the proposed
algorithm can compute the output of each image resizing re-
sult as the following.

Outputm′×3n′ = Lresize
m′×m · Inputm×3n ·Rresize

3n×3n′ (3)

Figure 3 compares the performance of TensorCV with
conventional OpenCV implementations that can only use
CPUs or CUDA cores. The baseline of Figure 3 is the CPU-
based implementation. TensorCV’s algorithm achieves up to
7.82× speedup in the RsCpCvRt function. However, using
geometric-mean that discount the outliers, TensorCV still
obtains 7.6× speedup on average. In contrast, on average,
OpenCV-CUDA that uses GPU/CUDA cores can only speed
up by 2×.

Another advantage of TensorCV is the ability to optimize
across functions and combine several matrix multiplications
into fewer ones. We presented four different use cases that
combine multiple pre-processing functions. Compared with
other implementations, TensorCV achieves 7.25× geometric
mean in speedup. However, the performance is limited in
the conventional GPU implementation, where cross-function
optimization is complicated.

4. REFERENCES
[1] Christopher Aberger, Andrew Lamb, Kunle Olukotun, and

Christopher Ré. Levelheaded: A unified engine for business
intelligence and linear algebra querying. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages
449–460. IEEE, 2018.

[2] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and
sparse matrix multiplications. In Proceedings of the 12th
International Conference on Database Theory, pages 121–126.
Association for Computing Machinery, 2009.

[3] Apple Inc. Apple M1. https://www.apple.com/newsroom/
2020/11/apple-unleashes-m1/, 11 2020.

[4] Arm Corporation. Introducing the Scalable Matrix Extension for the
Armv9-A Architecture.
https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/
scalable-matrix-extension-armv9-a-architecture, 2021.

[5] Sebastian Breß and Gunter Saake. Why it is time for a hype: A
hybrid query processing engine for efficient gpu coprocessing in
dbms. Proc. VLDB Endow., 6(12):1398–1403, 2013.

[6] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Fast join project
query evaluation using matrix multiplication. In SIGMOD, pages
1213–1223. Association for Computing Machinery, 2020.

[7] Oksana Dolmatova, Nikolaus Augsten, and Michael H Böhlen. A
relational matrix algebra and its implementation in a column store. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 2573–2587, 2020.

[8] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme.
AIDA: Abstraction for advanced in-database analytics. PVLDB,
11(11):1400–1413, 2018.

[9] Naga K Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and
Dinesh Manocha. Fast computation of database operations using
graphics processors. In SIGMOD, pages 215–226. ACM, 2004.

[10] Dongho Ha, Won Woo Ro, and Hung-Wei Tseng. Accelerating
ML-adjacent Computation Using Tensor Processors. In The 2023
ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED 2023, 2023.

[11] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann,
Daisy Zhe Wang, Eugene Fratkin, Aleksander Gorajek, Kee Siong
Ng, Caleb Welton, Xixuan Feng, Kun Li, et al. The madlib analytics
library. Proceedings of the VLDB Endowment, 5(12), 2012.

[12] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. TCUDB:
Accelerating Database with Tensor Processors. In the 2022 ACM
SIGMOD/PODS International Conference on Management of Data,
SIGMOD 2022, 2022.

[13] Intel Corporation. Intrinsics for Intel(R) Advanced Matrix
Extensions (Intel(R) AMX) Instructions. https://software.
intel.com/content/www/us/en/develop/documentation/
cpp-compiler-developer-guide-and-reference/top/
compiler-reference/intrinsics/
intrinsics-for-intel-advanced-matrix-extensions-intel-amx-instructions.
html, 2021.

[14] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou,
and Steven Swanson. Hippogriffdb: Balancing i/o and gpu bandwidth
in big data analytics. PVLDB, 9(14):1647–1658, 2016.

[15] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine.
Scalable linear algebra on a relational database system. IEEE
Transactions on Knowledge and Data Engineering,
31(7):1224–1238, 2019.

[16] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S Vetter. Nvidia tensor core programmability,
performance & precision. In 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages
522–531. IEEE, 2018.

[17] Johns Paul, Jiong He, and Bingsheng He. GPL: A GPU-based
pipelined query processing engine. In Proceedings of the 2016
International Conference on Management of Data, pages
1935–1950, 2016.

[18] Kaz Sato, Cliff Young, and David Patterson. An in-depth look at
google’s first tensor processing unit (TPU). Google Cloud Big Data
and Machine Learning Blog, 12, 2017.

[19] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the
fundamental performance characteristics of gpus and cpus for
database analytics. In SIGMOD, pages 1617–1632, 2020.

[20] Brian W Thompto, Dung Q Nguyen, José E Moreira, Ramon
Bertran, Hans Jacobson, Richard J Eickemeyer, Rahul M Rao,
Michael Goulet, Marcy Byers, Christopher J Gonzalez, et al. Energy
Efficiency Boost in the AI-Infused POWER10 Processor. In 2021
ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021.

[21] Slawomir Walkowiak, Konrad Wawruch, Marita Nowotka, Lukasz
Ligowski, and Witold Rudnicki. Exploring utilisation of gpu for
database applications. Procedia Computer Science, 1(1):505–513,
2010.

[22] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee,
Xiaoning Ding, and Xiaodong Zhang. Concurrent analytical query
processing with gpus. VLDB, 7(11):1011–1022, 7 2014.

[23] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar
Yalamanchili. Kernel weaver: Automatically fusing database
primitives for efficient gpu computation. In MICRO, pages 107–118.
IEEE Computer Society, 2012.

[24] Haicheng Wu, D. Zinn, M. Aref, and S. Yalamanchili. Multipredicate
join algorithms for accelerating relational graph processing on gpus.
In International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures, 09
2014.

[25] Abenezer Wudenhe and Hung-Wei Tseng. TPUPoint: Automatically
Characterizing Hardware Accelerated Data Center Machine Learning
Program Behavior. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2021, 2021.

[26] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The yin and yang of
processing data warehousing queries on gpu devices. Proceedings of

the VLDB Endowment, 6(10):817–828, 2013.

