
Giving Old Servers New Life at Hyperscale
Jaylen Wang

Carnegie Mellon University
jaylenw@andrew.cmu.edu

Udit Gupta
Cornell University

ugupta@cornell.edu

Akshitha Sriraman
Carnegie Mellon University

akshitha@cmu.edu

I. INTRODUCTION

Scientists have made it clear that anthropogenic climate
change is one of the greatest threats to both global health
and the planet’s ecosystem [7], [8]. To mitigate climate
change, systems researchers have a particular role to play, as
recent studies estimate that 2% of global emissions are due
to Information and Communication Technology (ICT) [16].
Critically, projections show that ICT could constitute 20% of
anthropogenic emissions by 2030, with much of the increase
attributable to an increased demand for cloud computing [15].

To reduce emissions and waste, sustainable resource man-
agement has focused on ways to reduce, reuse, and recycle
common resources such as oil and plastics; similar strategies
are understudied for managing data center server hardware,
where current practice is to dispose of server hardware every
three to four years [9]. Minimizing hardware waste is espe-
cially crucial; previous work has shown that up to 50% of
data center system emissions are “embodied” emissions, which
result from the manufacturing and transport of hardware [14].

Prior work has highlighted the issue of embodied emissions
and the potential benefits of extending data center server
lifetimes [13], [14]. However, few works have focused on
practical methods for extending data center server lifetimes.

We take a step towards understanding how older hardware
can be reused in a data center while preserving end-to-end ser-
vice performance (i.e., tail latency). We focus on performance
as it is a key driving factor behind server refreshes, along
with other factors such as marketing considerations, failure
rates, etc. We particularly focus on the modern microservice
paradigm, wherein a complex web service is composed of
numerous distributed microservices such as HTTP connection
termination, key-value serving, query rewriting, and protocol
routing [17]. Since the microservice paradigm improves web
service development and scalability [12], [19], it has been
adopted by several companies such as Amazon [1], Netflix [5],
Gilt [3], LinkedIn [4], and SoundCloud [6].

We analyze the impact on performance when running all
and parts of a microservice-based application on older server
generations. From our results, we find operating regions where
older hardware does not reduce service performance compared
to running on newer servers. For example, we observe that
some older hardware can still achieve performance Service
Level Objectives (SLOs) under lower request loads. We also
find that certain microservices and regions of a microservice
call graph are more tolerant to being run on older hardware.

Intel AMD

Xeon E5-2660 v2 Xeon E5-2660 v3 EPYC 7542 EPYC 7543

Microarchitecture Ivy Bridge (2012) Haswell (2013) Rome (2019) Milan (2021)
Cores/Threads 10/20 10/20 32/64 32/64
Node 22 nm 22 nm 7 nm 7 nm
Base/Turbo (GHz) 2.2 / 3 2.6 / 3.3 2.9 / 3.4 2.8 / 3.7
LLC Cache Size 25 MB 25 MB 128 MB 256 MB
TDP (W) 95 105 225 225
RAM (DDR4) 256GB (1.6 GHz) 160GB (2.133 GHz) 256GB (3.2 GHz) 512GB (3.2 GHz)
Disk (SATA) 2 TB HDD 480 GB SSD 1.6 TB SSD 2 TB SSD
NIC 10Gb (PCIe v3) 10 Gb (PCIe v3) 25 Gb (PCIe v4.0) 25 Gb (PCIe v4.0)

TABLE I
CHARACTERISTICS OF TWO GENERATIONS (OLD ON THE LEFT, NEW ON
THE RIGHT) OF INTEL AND AMD SERVERS USED IN OUR EXPERIMENTS.

We show that there are “carbon inefficiencies” in current
data center resource management strategies, and better carbon
efficiency can be achieved by scheduling on older hardware
when appropriate. We motivate the need for new microservice
scheduling strategies that consider hardware generations’ em-
bodied and operational characteristics. Our work motivates a
scheduling system that leverages microservices’ performance
tolerance to older hardware generations to prevent environ-
mentally costly server refreshes and hardware waste.

II. CHARACTERIZING SERVER GENERATIONS

We characterize how common data center services perform
on different hardware generations.

Characterization methodology. We compare microservice-
based applications’ performance on two AMD and Intel server
generations. The servers are of the same SKU and only differ
by their generation. The servers are located in CloudLab data
centers [10]. Their characteristics are summarized in Table I.

We show results for DeathStarBench’s Social Network
service [11], which allows users to create posts with text and
images that are processed. This functionality is implemented
as thirty core microservices that communicate via Apache
Thrift Remote Procedure Calls [2]. For brevity, we omit
results for a different DeathStarBench application, Hotel
Reservation which displays similar results and insights.

Our setup allows us to evenly distribute the thirty microser-
vices in Social Network across the number of nodes
under test, pin each microservice to a single socket, and keep
microservice placements constant. In a given server, we also
constrain each microservice to the same amount of RAM. For
all experiments, we use an open-loop load generator and sweep
across low to high queries-per-second (QPS) conditions until a
saturation throughput is reached, while recording tail latencies.

1



Fig. 1. Tail (99th%) latency across different load conditions (in QPS) for
older and newer Intel and AMD server SKUs. Older servers satisfy the SLO
at certain low load conditions.

A. End-to-End Service Characterization Across Generations

We first study how an end-to-end service behaves on dif-
ferent server generations. We distribute Social Network’s
thirty microservices across fifteen nodes of the same server
type (i.e., same SKU and generation).

Fig. 1 shows the resulting plot of latency vs. QPS. Latency
above the gray dotted line cannot meaningfully be measured
as the system is under saturation, where queuing delays grow
unbounded. The red dotted line shows a performance-guided
SLO target taken as the latency achieved at 75% of the
saturation load for the best performing server (“New AMD”).

We find that at certain lower load conditions, both of the
older servers can still achieve the SLO (often within a latency
margin of 2–3 milliseconds). This result indicates that using
newer servers to serve lower load conditions is a carbon
inefficiency, as older servers can still achieve SLO targets.
Hence, it is worth exploring if scheduling services on older
hardware under lower loads can save embodied emissions.

B. Microservice-Based Characterization Across Generations

While Fig. 1 shows the end-to-end service’s performance
when running on older hardware, it does not show a specific
microservice’s performance tolerance. Studying fine-grained
microservice-level placement strategies that minimize per-
formance impact might reveal further carbon optimization
opportunities.

To this end, we conduct a set of experiments where all
microservices are initially placed on fifteen newer servers
under the same experimental setup as in §II-A. We then place
one microservice on an older server, while keeping all other
microservices on the newer nodes. We perform a QPS sweep
and repeat for each of the thirty microservices. We report our
results on only the two generations of AMD nodes for brevity.

In Fig. 2, we show the results for a set of representative
microservices (those on the same call path are colored the
same). Other microservices show similar trends; we omit them
for brevity. We compare the performance of placing a specific
microservice on older hardware to an “All New” configuration,
indicating the impact on end-to-end service latency.

Certain microservices, such as user-timeline-service and
user-timeline-mongodb, consistently exhibit higher latencies

Fig. 2. Impact on end-to-end service tail (99th%) latency upon placing a
certain microservice on older hardware. Certain microservices are more (e.g.,
media-service) and less (e.g., user-timeline-service) tolerant to placement on
older hardware.

when placed on older hardware compared to “All New”,
indicating lower tolerance. Conversely, microservices such as
media-service and media-mongodb are more tolerant. The
media microservices even perform better at high loads, since
they run without contention on an older machine. While
the microservice model’s modularity is often exploited for
performance, the imbalance between microservices in toler-
ances to older hardware suggests that optimizing individual
microservice scheduling can improve carbon efficiency.

We also find that microservices on the same call path exhibit
similar tolerances to placement on older hardware, regardless
of their underlying functionality. This observation suggests
that a microservice’s location in the call graph can determine
its tolerance to older hardware. Further research is needed to
determine the specific features of call graph regions that make
them more amenable to placement on older nodes.

III. SYSTEM IMPLICATIONS AND CARBON ACCOUNTING

To reduce carbon emissions and waste, we can use ob-
servations from §II to develop an end-to-end system that
optimizes scheduling and placement strategies, by balancing
performance and carbon tradeoffs to extend server lifetimes.
Such a system can incorporate (1) offline profiling, similar
to §II, to inform an initial carbon-efficient placement and (2)
online monitoring, to ensure that latency SLOs are met.

Accurately evaluating such a scheduler’s policies requires
accounting for operational and embodied emission reductions.
To measure operational emissions, we can track power usage.
However, measuring embodied emissions is more challenging.
Prior work used lifetime as a measure for embodied carbon,
but their methods do not consider how performance impacts
lifetime [13], [18]. To address this challenge, we propose a
performance-aware lifetime model that considers the ability to
achieve SLOs for individual service components (e.g., a group
of microservices). This approach accounts for a server’s ability
to provide useful computing power, even if only for a region of
a microservice call graph. We will expand our study to include
further server generations, to better reason about lifetimes and
perform carbon accounting for data center hardware.

2



REFERENCES

[1] “Amazon,” https://gigaom.com/2011/10/12/419-the-biggest-thing-
amazon-got-right-the-platform/.

[2] “Apache Thrift - Home.” [Online]. Available: https://thrift.apache.org/
[3] “Gilt,” www.infoq.com/presentations/scale-gilt.
[4] “Linkedin,” www.infoq.com/presentations/linkedin-microservices-urn.
[5] “Netflix,” www.nginx.com/blog/microservices-at-netflix-architectural-

best-practices/.
[6] “Soundcloud,” https://developers.soundcloud.com/blog/building-

products-at-soundcloud-part-1-dealing-with-the-monolith.
[7] Climate Change 2021: The Physical Science Basis. Contribution of

Working Group I to the Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change. Cambridge, United Kingdom and
New York, NY, USA: Cambridge University Press, 2021.

[8] L. Atwoli, A. H. Baqui, T. Benfield, R. Bosurgi, F. Godlee, S. Hancocks,
R. Horton, L. Laybourn-Langton, C. A. Monteiro, I. Norman, K. Patrick,
N. Praities, M. G. Olde Rikkert, E. J. Rubin, P. Sahni, R. Smith,
N. Talley, S. Turale, and D. Vázquez, “Call for Emergency Action to
Limit Global Temperature Increases, Restore Biodiversity, and Protect
Health,” New England Journal of Medicine, no. 12, Sep. 2021.

[9] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
Second edition,” Synthesis Lectures on Computer Architecture, Jul. 2013.

[10] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of cloudlab,” in Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’19. USA: USENIX Association, Jul. 2019.

[11] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York, NY,
USA: Association for Computing Machinery, Apr. 2019.

[12] M. J. Greeven, H. Yu, and J. Shan, “Why companies
must embrace microservices and modular thinking,” MIT
Sloan Management Review, Summer 2021. [Online]. Avail-
able: https://www.proquest.com/scholarly-journals/why-companies-
must-embrace-microservices-modular/docview/2555433700/se-2

[13] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks,
and C.-J. Wu, “ACT: designing sustainable computer systems with an
architectural carbon modeling tool,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser. ISCA ’22.
New York, NY, USA: Association for Computing Machinery, Jun. 2022.

[14] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-
Y. Wei, D. Brooks, and C.-J. Wu, “Chasing Carbon: The Elusive
Environmental Footprint of Computing,” Oct. 2020. [Online]. Available:
http://arxiv.org/abs/2011.02839

[15] N. Jones, “How to stop data centres from gobbling up the world’s
electricity,” Nature, Sep. 2018.

[16] B. Knowles, ACM TechBrief: Computing and Climate Change. Asso-
ciation for Computing Machinery, 2021.

[17] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned Threading for
OLDI Microservices,” in Proceedings of the 12th USENIX conference
on Operating Systems Design and Implementation, 2018.

[18] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard comput-
ing: Repurposing discarded smartphones to minimize carbon,” 2022.

[19] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and microservice architecture
pattern to deploy web applications in the cloud,” in 10CCC, 2015.

3


