
Exploring Memory Expansion Designs
for Training Mixture-of-Experts Models

Taekyung Heo1, Saeed Rashidi1, 3�, Changhai Man1, Divya Kiran Kadiyala1, William Won1,
Sudarshan Srinivasan2, Midhilesh Elavazhagan2, Madhu Kumar2, Alexandros Daglis1, Tushar Krishna1

1Georgia Institute of Technology 2Intel 3Hewlett Packard Enterprise

I. INTRODUCTION

Machine learning (ML) has achieved impressive success in a
variety of fields [3], [6], [8], [15], [19]. It is widely recognized
that increasing model parameters can enhance ML model
capabilities [18]. As a result, the sizes of ML models have
grown exponentially in recent years. However, this expansion
in model parameters introduces computational and memory-
related challenges. Mixture-of-Experts (MoE) has emerged as
a potential solution to mitigate computational costs [13], [20],
[26], [31]. In traditional dense models, the computational cost
increases linearly with the model size since all parameters are
involved in the training process. MoE models differ from
traditional dense models as they partition and selectively
activate a subset of parameters, resulting in improved model
quality without substantially increasing computational costs.
However, MoE models require additional memory capacity,
leading to the adoption of high-capacity, expensive HBM for
quick off-GPU memory access. As GPU memory has not scaled
proportionately, it has given rise to the challenge known as the
GPU memory wall [28]. Memory expansion techniques can
help overcome the GPU memory wall challenge by enabling
GPUs to access remote memory. Although memory expansion
has been studied for decades, it has not been explored in the
context of training MoE models. This study aims to investigate
a range of memory expansion design options, with the goal
of optimizing both performance and performance per cost for
training 1 trillion parameter MoE models.

II. BACKGROUND

Various techniques have been proposed to overcome the
GPU memory wall.

Memory Optimization Techniques. ZeRO [27] is a repre-
sentative memory optimization technique. ZeRO-DP optimizes
the model states by partitioning model parameters and removing
replicates while ZeRO-R optimizes the residual states. ZeRO-
DP has three stages: ZeRO-1, ZeRO-2, and ZeRO-3. Fully-
sharded data parallelism (FSDP) [5], [24], [36] is a library
similar to ZeRO-3 that enables parameter sharding. Other
previously proposed memory optimization techniques include
memory-efficient optimizers [2], [32], recomputation [7], [25],
[33], and memory harvesting [9].

Memory Offloading Techniques. The key idea behind
memory offloading is to offload model parameters or optimizer
states to remote memory, which is located away from local

�This work was done while the author was affiliated with Georgia Tech

GPU memory. ZeRO-offload [29] alleviates the pressure on
GPU memory by offloading optimizer states to CPU memory.
ZeRO-Infinity allows GPUs to utilize CPU memory and NVMe
memory in addition to their local HBM memory [28].

Memory Disaggregation for Distributed Training. While
similar to memory offloading in terms of utilizing remote
memory, memory disaggregation assumes a unified address
space and seamless data access with cache-coherent net-
works. Memory disaggregation has been studied for several
decades [10], [17], [21]. However, due to the absence of
cache-coherent memory networks, earlier designs were closer
to memory offloading relying on RDMA and paging mech-
anisms [1], [16], [22], [30]. CXL arises as a fundamental
solution, enabling genuine memory disaggregation by providing
memory expansion, a unified address space, coherency, and
high performance.

III. MEMORY EXPANSION DESIGN OPTIONS

In this study, we consider both memory offloading and
memory disaggregation as memory expansion techniques. We
evaluate the performance of four memory expansion designs
inspired by current systems from CPU/GPU vendors, as
illustrated in Fig. 1. The configurations for these design options

Network

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

C CPU G GPU RM Remote memoryLM Local memory CM CPU memory

RM

C

LM

G

LM

G

LM

G

LM

G

Network

RM

C

LM

G

LM

G

LM

G

LM

G

CM

C

LM

G

LM

G

LM

G

LM

G

Network

CM

C

LM

G

LM

G

LM

G

LM

G

RM RM RM RM RM RM RM RM

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

RM

C

LM

G

Network

① Per-node memory expansion ② Per-GPU memory expansion

③ Integ. chip mem. exp with CPU network ④ Integ. chip mem. exp with GPU network

Fig. 1: Memory expansion design points.

Peak Perf Local Mem BW Remote Mem BW GPU Link BW
1 2048 TFLOPS 4096 GB/sec 128 GB/sec 900 GB/sec
2 2048 TFLOPS 4096 GB/sec 512 GB/sec 900 GB/sec
3 2048 TFLOPS 4096 GB/sec 900 GB/sec 512 GB/sec
4 2048 TFLOPS 4096 GB/sec 900 GB/sec 900 GB/sec

TABLE I: Memory expansion design point configurations.

Memory Offloading Per-GPU Required
HBM Capacity

Per-GPU Required
Remote Memory Capacity

Conservative 16.3GB 72.9GB
Aggressive 6.25GB 82.9GB

TABLE II: Required memory capacity when training MoE.

are shown in Table I. To simulate future GPU architectures,
we set the peak performance of GPUs to 2048 TFLOPS and
local memory bandwidth to 4096 GB/s for all design options.

1 Per-node Expansion [11], [14]. The system consists
of CPU-GPU nodes, with each node comprising four GPUs
connected to a CPU via PCIe. GPUs use the CPU-side memory
as remote memory and a portion of the trained model can be
offloaded there. The GPUs are interconnected through a high-
bandwidth network, such as NVLinks.

2 Per-GPU Expansion [4]. Similar to per-node expansion,
but each GPU also has CXL-attached remote memory. GPUs
do not access CPU memory or other GPUs’ memory.

3 & 4 Integrated-Chip Expansion [12], [23]. This
system includes an integrated chip comprising a CPU and
a GPU, connected through a high-speed interconnect with a
900 GB/s bandwidth. The CPU-side memories can offer a total
bandwidth of 1000 GB/s, accessible by the GPU via the chip-
to-chip interconnect. To attain enhanced performance, multiple
integrated chips can be interconnected. Network connections
can be established using either CPUs (3) or GPUs (4).

IV. METHODOLOGY

Workloads. We evaluate MoE with two distinct memory of-
floading configurations. In particular, we utilize the DeepSpeed-
MoE model [26] with 1T parameters with 256 GPUs. MoE is
modeled in the form of directed acyclic graphs, where nodes
represent memory access, computation, and communication,
derived from real-world models.

Simulator. We use ASTRA-sim [35] to evaluate the four
different architectures due to its capability to run training tasks
while adjusting system design parameters. GPUs are modeled
with a roofline model [34]. Local memory access is modeled
as part of the roofline model, under the assumption that it is
pipelined with computation, while remote memory access is
modeled with a simple bandwidth model.

Memory Offloading Options. We evaluate two
memory offloading options: conservative and aggressive.
Conservative keeps weights and activation checkpoints
in GPU HBM memory while pushing back and popping
recomputed activations from remote memory. In contrast,
aggressive retains weights, activation checkpoints, and
recomputed activations in remote memory, pulling them into
GPU HBM memory layer-by-layer and writing them back to
remote memory after computation. Aggressive minimizes
the required per-GPU HBM capacity while maintaining
efficient memory management during training. Table II
presents the per-GPU required memory capacity to train the
MoE model with each of the offloading options.

V. EVALUATION

Fig. 2 shows the normalized training time for the MoE
model using four memory expansion designs and two memory

① ② ③ ④
0

50

100

150

200

250

No
rm

. E
xe

c
Ti

m
e

100.0

35.0 39.0 27.0

282.0

74.0
47.0 40.0

Conservative
Aggressive

Comp Exp. Loc Mem Exp. Rem Mem Exp. Comm

Fig. 2: Normalized execution time to train MoE.

offloading options. The execution time is normalized with
respect to the per-node memory expansion (1) with the
conservative offloading. Each bar is divided into four
segments: compute time, exposed local memory access time,
exposed remote memory access time, and exposed communi-
cation time. We refer to any memory access or communication
time that is not overlapped by computation as ”exposed”. Such
exposed time components directly contribute toward execution
time. In every design, conservative is illustrated on the
left, whereas aggressive is shown on the right with hatches.

For the conservative results, remote memory access
time becomes a bottleneck in 1 due to its low remote memory
bandwidth, which stems from the PCIe constraint. When the
remote memory bandwidth surpasses 512GB/s, communication
is the limiting factor, rather than remote memory access time,
in most cases. 2 outperforms 3 owing to its superior network
bandwidth. 4 presents the best performance due to the highest
remote memory bandwidth and GPU link bandwidth.

With the aggressive offloading option, 1 ’s training is
2.82× slower, but the performance slowdown decreases to
1.48× in 4 due to its outstanding remote memory bandwidth.
Aggressive incurs a minor performance reduction because
of high remote memory bandwidth, allowing for a 61.6%
per-GPU capacity reduction of the costly HBM component.
This shows that high-bandwidth to remote DDRs opens up
an opportunity for aggressive memory offloading, reducing
the required local HBM capacity. Interestingly, aggressive
enables 3 to surpass 2 in performance, contrasting their
conservative results. This indicates that CXL-based direct
memory expansion performs comparably to NVLink-based
memory systems when memory bandwidth requirements are
low but performs worse when the requirement is high.

VI. CONCLUSION

In this study, we evaluated four memory system design
options in distributed training to tackle the GPU memory
wall. Our evaluation revealed several key findings. Firstly,
remote memory access time and communication time emerge
as major performance bottlenecks when training MoE models.
Secondly, the aggressive offloading option reduces local
HBM memory requirements by 61.6%. Lastly, we observe
that per-GPU memory expansion architectures will be able
to deliver comparable performance to high-end integrated
chip systems when memory bandwidth requirement is low
(conservative). We plan to continue this study to cover
pooled memory systems with more workloads and parallelisms.

REFERENCES

[1] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can Far Memory Improve
Job Throughput?” in Proceedings of the 15th European Conference on
Computer Systems (EuroSys), 2020.

[2] R. Anil, V. Gupta, T. Koren, and Y. Singer, “Memory-efficient adaptive
optimization for large-scale learning,” arXiv preprint arXiv:1901.11150,
vol. 4, 2019.

[3] S. Ö. Arık, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep Voice: Real-
time Neural Text-to-Speech,” in International Conference on Machine
Learning. PMLR, 2017, pp. 195–204.

[4] “Memory Expansion,” https://www.asteralabs.com/applications/memory-
expansion/, [Online; accessed 4-May-2023].

[5] P. Belevich, Y. Zhao, S. Li, J. Choi, R. Varma, P. Damania, G. Chauhan,
M. Yadav, P.-Y. Aquilanti, and S. Ranganatha, “Training a 1 Trillion
Parameter Model With PyTorch Fully Sharded Data Parallel on AWS,”
https://medium.com/pytorch/training-a-1-trillion-parameter-model-
with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff, 2022,
[Online; accessed 28-June-2022].

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
Affordance for Direct Perception in Autonomous Driving,” in Proceedings
of the IEEE international conference on computer vision, 2015.

[7] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[8] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,” arXiv
preprint arXiv:1406.1078, 2014.

[9] S. Choi, T. Kim, J. Jeong, R. Ausavarungnirun, M. Jeon, Y. Kwon, and
J. Ahn, “Memory Harvesting in Multi-GPU Systems with Hierarchical
Unified Virtual Memory,” in Proceedings of USENIX Annual Technical
Conference (ATC), 2022.

[10] D. E. Comer and J. Griffioen, “A new design for distributed systems:
The remote memory model,” 1990.

[11] “NVIDIA DGX-2,” https://www.nvidia.com/en-gb/data-center/dgx-2/,
[Online; accessed 3-May-2023].

[12] “Intel HPC Roadmap: 800W Rialto Bridge GPU, Falcon
Shores XPU, Ponte Vecchio with HBM Benchmarks,”
https://www.tomshardware.com/news/intel-hpc-roadmap-800w-
rialto-bridge-gpu-falcon-shores-xpu-ponte-vecchio-with-hbm, [Online;
accessed 3-May-2023].

[13] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” 2021.

[14] “Habana Gaudi,” https://habana.ai/products/, [Online; accessed 3-May-
2023].

[15] C. A. Gomez-Uribe and N. Hunt, “The Netflix Recommender System:
Algorithms, Business Value, and Innovation,” ACM Transactions on
Management Information Systems (TMIS), vol. 6, no. 4, pp. 1–19, 2015.

[16] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
Memory Disaggregation with Infiniswap,” in Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017.

[17] L. Iftode, K. Li, and K. Petersen, “Memory servers for multicomputers,”
in Digest of Papers. Compcon Spring. IEEE, 1993, pp. 538–547.

[18] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling Laws for Neural
Language Models,” arXiv preprint arXiv:2001.08361, 2020.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[20] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “GShard: Scaling Giant Models with

Conditional Computation and Automatic Sharding,” arXiv preprint
arXiv:2006.16668, 2020.

[21] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch, “Disaggregated Memory for expansion and Sharing in
Blade Servers,” in Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), 2009.

[22] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont, “Welcome
to Zombieland: Practical and Energy-efficient Memory Disaggregation
in a Datacenter,” in Proceedings of the 13th European Conference on
Computer Systems (EuroSys), 2018.

[23] “NVIDIA Grace Hopper Superchip,” https://www.nvidia.com/en-us/data-
center/grace-hopper-superchip/, [Online; accessed 14-October-2022].

[24] M. Ott, S. Shleifer, M. Xu, P. Goyal, Q. Duval, and V. Caggiano,
“Fully Sharded Data Parallel: faster AI training with fewer GPUs,”
https://engineering.fb.com/2021/07/15/open-source/fsdp/, 2021, [Online;
accessed 28-June-2022].

[25] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,
“Capuchin: Tensor-based GPU Memory Management for Deep Learning,”
in Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2020.

[26] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A.
Awan, J. Rasley, and Y. He, “DeepSpeed-MoE: Advancing Mixture-of-
Experts Inference and Training to Power Next-Generation AI Scale,”
arXiv preprint arXiv:2201.05596, 2022.

[27] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory
optimizations Toward Training Trillion Parameter Models,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020.

[28] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “ZeRO-
Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021.

[29] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale Model
Training,” in USENIX Annual Technical Conference (ATC), 2021.

[30] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, “AIFM: High-
Performance, Application-Integrated Far Memory,” in Proceedings of
the 14th Symposium on Operating Systems Design and Implementation
(OSDI), 2020.

[31] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer,” arXiv preprint arXiv:1701.06538, 2017.

[32] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with
sublinear memory cost,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4596–4604.

[33] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“SuperNeurons: Dynamic GPU Memory Management for Training Deep
Neural Networks,” in Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2018.

[34] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[35] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling hierarchical networks and disaggregated
systems for large-model training at scale,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2023.

[36] Y. Zhao, R. Varma, C.-C. Huang, S. Li, M. Xu, and A. Des-
maison, “Introducing PyTorch Fully Sharded Data Parallel (FSDP)
API,” https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-
parallel-api/, 2022, [Online; accessed 28-June-2022].

https://www.asteralabs.com/applications/memory-expansion/
https://www.asteralabs.com/applications/memory-expansion/
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
https://www.nvidia.com/en-gb/data-center/dgx-2/
https://www.tomshardware.com/news/intel-hpc-roadmap-800w-rialto-bridge-gpu-falcon-shores-xpu-ponte-vecchio-with-hbm
https://www.tomshardware.com/news/intel-hpc-roadmap-800w-rialto-bridge-gpu-falcon-shores-xpu-ponte-vecchio-with-hbm
https://habana.ai/products/
https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/
https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

	Introduction
	Background
	Memory Expansion Design Options
	Methodology
	Evaluation
	Conclusion
	References

