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Abstract
Software-defined networking (SDN) and software-defined
flash (SDF) have been becoming the backbone of modern
data centers. They are managed separately to handle I/O
requests. At first glance, this is a reasonable design by fol-
lowing the rack-scale hierarchical design principles. But it
suffers from suboptimal end-to-end performance, due to the
lack of coordination between SDN and SDF.

In this paper, we take an initial effort towards building the
next-generation software-defined data center by co-designing
the SDN and SDF stacks. We redefine the functions of their
control plane and data plane, and split them up with a new
architecture named NetFlash. NetFlash has three major com-
ponents: (1) coordinated I/O scheduling, to coordinate the
effort of I/O scheduling across the network and storage stack
achieve predictable end-to-end performance; (2) coordinated
garbage collection (GC), to coordinate the GC across the
SSDs in a rack to minimize their impact on incoming I/O
requests; (3) rack-scale wear leveling, which enables global
wear leveling among SSDs in a rack by periodically swapping
data, for achieving improved device lifetime for the rack.
1 Background and Motivation
The software-defined infrastructure has become the new
standard for managing data centers, as it provides flexibility
and agility for platform operators to customize hardware
resources [6, 12, 24]. As the backbone technology, software-
defined networking (SDN) allows operators to manage net-
work resources through programmable switches [5, 11, 19].
Similarly, software-defined storage (SDS) [24, 28, 31] has also
been developed. A typical example is software-defined flash
(SDF) [21, 24], which enables upper-level software to man-
age the low-level flash chips for improved performance and
resource utilization [9, 16, 24]. Since the cost of flash chips
has dramatically decreased while offering orders of magni-
tude better performance than hard disk drives (HDDs), they
are becoming the mainstream choice in large-scale data cen-
ters [8, 13, 14]. And naturally, SDF has been under intensive
study and wide deployment [9, 14, 20, 27].

Both SDN and SDF have their own control plane and data
plane, and provide programmability for developers to im-
plement policies for resource management and scheduling.
However, SDN and SDF handle I/O requests separately across
the network and storage stacks in modern data centers. This
suffers from suboptimal end-to-end performance and misses
the opportunities offered by the software-defined rack. Ide-
ally, as we forward I/O requests in SDN with advance knowl-
edge of the storage status (e.g., busy, idle, or predicted perfor-
mance), it can make smarter decisions (e.g., early redirection
to data replicas). Similarly, as SDF schedules the received I/O
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Figure 1. System overview of NetFlash.

requests, the measured network latency can help the SDF
adjust I/O scheduling to meet the service-level objective.
2 NetFlash Design and Implementation
In this paper, we rethink the software-defined network and
storage hierarchy, and propose a new software-defined archi-
tecture, NetFlash, shown in Figure 1. We first decouple the
storage management functions (i.e., flash translation layer)
of SSDs, and integrate appropriate functions such as GC
and wear-leveling into the SDN to enable SDN/SDF state
sharing and global resource management. Second, we use
state sharing in the data plane to coordinate I/O scheduling.
Third, to alleviate the GC overhead, NetFlash exploits the
idle data replicas in the rack and redirects I/O requests that
would be delayed by GC. Fourth, NetFlash enables rack-scale
wear-leveling using a two-level wear leveling mechanism.
Decoupling the Storage Management. As the ToR switch
has limited hardware resources, we keep the essential func-
tions for the virtual SSD (vSSD) management locally on stor-
age servers. They include SSD virtualization, device-level
mapping, and local wear leveling for SSDs in a server.

To make the ToR switch aware of the states of vSSDs in a
rack, NetFlash maintains two tables as shown in Figure 2: (1)
replica table, which tracks the GC status and replica of each
vSSD; (2) destination table, which tracks the server IP and
GC status of each vSSD. For state communication between
the ToR switch and storage servers in the rack, NetFlash has
its own network packet format based on regular network
protocols. The packet has one field to indicate different op-
erations, one field for the target vSSD ID, and one field for
the measured network latency for the packets transferred
through the data center network. The payload will be filled
according to the operation specified in NetFlash header.
Coordinated I/O Scheduling. NetFlash tracks I/O requests
across the entire stack: (1) 𝑁𝑒𝑡𝑡𝑖𝑚𝑒 : the elapsed time in the
network since the I/O request is issued until it reaches the
storage server; (2) 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 : the delayed time in the I/O
queue of the storage stack; (3) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 : the predicted time
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vSSD_ID GC Status Replica vSSD_ID
vSSD1 1 vSSD12

... ... ...

vSSD_ID GC Status Server IP
vSSD1 1 10.0.0.16

... ... ...
vSSD12 0 10.0.0.20

(a) Replica Table

(b) Destination Table

Figure 2. NetFlash tables placed in the ToR switch.

to transfer the response back over the network. To manage
I/O scheduling in SDF, NetFlash uses 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 = (𝑁𝑒𝑡𝑡𝑖𝑚𝑒

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒+ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) as the scheduling priority. As
NetFlash issues I/O requests from the queue in the storage
stack with the maximum 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 value. Unlike state-of-the-
art storage I/O scheduling schemes, NetFlash considers the
network latency to help reduce the end-to-end latency.

NetFlash tracks the𝑁𝑒𝑡𝑡𝑖𝑚𝑒 with In-band Network Teleme-
try (INT) in programmable switches [1] and determines the
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 using the queuing delay for each I/O request in
the queue of the storage stack. NetFlash predicts the time it
will take to return the response (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) with a simple
yet effective sliding window algorithm that uses the average
network latency measured from the most recent requests.
Coordinated Garbage Collection. Since the ToR switch
forwards each request entering the rack, it is natural to utilize
the switch to coordinate the GC events across these SSDs.

For each read request in the switch, NetFlash queries the
replica table to get the GC status and replica for the vSSD.
The destination table is queried for for the GC status of the
replica. If the vSSD is not performing GC or if both the vSSD
and its replica are performing GC, we forward the packet as
is. Otherwise, we redirect the request to the replica vSSD.
Since all replicas receive the same writes, they may per-

form GC concurrently [18]. Thus, we empower the switch to
delay a replica’s GC by configuring a relaxed soft_threshold.
Instead of having the SDF notify the switch when it must
do GC (at the hard_threshold), it requests GC once its free
block ratio falls below the earlier soft_threshold. The switch
can therefore delay GC in one replica until it reaches the
hard_threshold or until the other replica finishes GC.

NetFlash also opportunistically utilizes idle cycles to free
blocks. NetFlash predicts the idle time for a vSSD based on
the last interval between I/O requests [3, 22, 25]. Once the
predicted interval exceeds a set threshold, the storage server
executes the GC and updates the GC status in the switch.
Rack-ScaleWear Leveling. To extend the lifetime of a rack
of SSDs, we propose a two-level wear leveling mechanism: a
local (intra-server) wear balancer processes the local wear
balance between SSDs in a server, and a global (inter-server)
wear balancer reduces the wear variance for SSDs in a rack.
These balancers cooperate to ensure rack-scale wear leveling.

For the local wear balancer, to obtain the uniform life-
time among SSDs in a storage server, we track the average
erase count for an SSD and periodically swap the SSD that
has incurred the maximum wear with the SSD that has the
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minimum rate of wear, following the relaxed wear leveling
approach developed in [9]. NetFlash can achieve uniform
lifetime for SSDs in a storage server by swapping once per
12 days in the worst case. Similarly, we quantify the wear
imbalance between storage servers by using the wear of a
server (average erase count of its SSDs). However, the swap-
ping cost between servers is more expensive than within a
server, due to the networking overhead. Therefore, we relax
the swapping frequency to every 8 weeks by default.
Implementation.We implement NetFlash using a Tofino
switch [23] and programmable SSD, whose controller allows
read/write/erase operations against raw flash resources. The
switch tables are implemented using P4 [4]. The custom
packet format is implemented with DPDK [10].
Evaluation. We compare NetFlash with state-of-the-art
software-defined storage architecture designs: (1) VDC: Vir-
tual datacenter (VDC) [2], which enables end-to-end isola-
tion between each flow sharing the same physical network
and storage with multi-resource token-bucket rate limiting;
(2) NetFlash (Software): We extend VDC by adding software-
based coordinated I/O scheduling and GC, instead of using a
programmable switch and SSDs.
Our evaluation shows that: (1) NetFlash reduces the tail

latency of I/O requests by up to 5.8× for data-center applica-
tions (see Figure 3); (2) NetFlash is robust to various storage
and network scheduling policies; (3) NetFlash benefits vari-
ous SSD devices and network latency distributions; and (4)
NetFlash ensures the lifetime of an entire rack of SSDs.
3 Conclusion and Future Work
We present NetFlash, a new rack-scale storage system by co-
designing the software-defined networking and storage stack.
As software-defined data centers envision virtualization and
pooling of compute, memory, and storage resources for flex-
ibility and agility [29], these resources are increasingly dis-
aggregated over the network [7, 17, 26]. The trend towards
disaggregation provides opportunities for co-designing with
SDN. As we show with NetFlash, network/storage co-design
can improve end-to-end performance through cross-stack
state sharing and coordination between SDN and SDF. Ac-
cordingly, NetFlash represents an important step towards
building next-generation software-defined data centers. Sim-
ilarly, prior work has identified co-design opportunities be-
tween SDN and disaggregated memory [15, 30]. As future
work, we wish to exploit potential co-design opportunities
between the compute, memory, and storage coordinately
in the disaggregated setting, while treating programmable
switches as the new operating system for managing hard-
ware resources at rack scale.
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