
Building Next-Generation Software-Defined Data
Centers with Network-Storage Co-Design

Benjamin Reidys
University of Illinois Urbana-Champaign

Jian Huang
University of Illinois Urbana-Champaign

Abstract
Software-defined networking (SDN) and software-defined
flash (SDF) have been becoming the backbone of modern
data centers. They are managed separately to handle I/O
requests. At first glance, this is a reasonable design by fol-
lowing the rack-scale hierarchical design principles. But it
suffers from suboptimal end-to-end performance, due to the
lack of coordination between SDN and SDF.

In this paper, we take an initial effort towards building the
next-generation software-defined data center by co-designing
the SDN and SDF stacks. We redefine the functions of their
control plane and data plane, and split them up with a new
architecture named NetFlash. NetFlash has three major com-
ponents: (1) coordinated I/O scheduling, to coordinate the
effort of I/O scheduling across the network and storage stack
achieve predictable end-to-end performance; (2) coordinated
garbage collection (GC), to coordinate the GC across the
SSDs in a rack to minimize their impact on incoming I/O
requests; (3) rack-scale wear leveling, which enables global
wear leveling among SSDs in a rack by periodically swapping
data, for achieving improved device lifetime for the rack.
1 Background and Motivation
The software-defined infrastructure has become the new
standard for managing data centers, as it provides flexibility
and agility for platform operators to customize hardware
resources [6, 12, 24]. As the backbone technology, software-
defined networking (SDN) allows operators to manage net-
work resources through programmable switches [5, 11, 19].
Similarly, software-defined storage (SDS) [24, 28, 31] has also
been developed. A typical example is software-defined flash
(SDF) [21, 24], which enables upper-level software to man-
age the low-level flash chips for improved performance and
resource utilization [9, 16, 24]. Since the cost of flash chips
has dramatically decreased while offering orders of magni-
tude better performance than hard disk drives (HDDs), they
are becoming the mainstream choice in large-scale data cen-
ters [8, 13, 14]. And naturally, SDF has been under intensive
study and wide deployment [9, 14, 20, 27].

Both SDN and SDF have their own control plane and data
plane, and provide programmability for developers to im-
plement policies for resource management and scheduling.
However, SDN and SDF handle I/O requests separately across
the network and storage stacks in modern data centers. This
suffers from suboptimal end-to-end performance and misses
the opportunities offered by the software-defined rack. Ide-
ally, as we forward I/O requests in SDN with advance knowl-
edge of the storage status (e.g., busy, idle, or predicted perfor-
mance), it can make smarter decisions (e.g., early redirection
to data replicas). Similarly, as SDF schedules the received I/O

Switch Data Plane

L2/L3 
Routing

Data 
Cache

Network
Statistics

Network Control Plane

…

To
R

 S
w

itc
h

SD
F

Storage Server Storage Server Storage Server

Coordinated I/O 
Scheduling

Coordinated GC

Rack-scale 
Wear Leveling

Global SSD-Level 
Mapping Table

SSD

SSD

SSD

SSD

SSD

SSD

Local Wear Leveling

Device-Level Mapping

SSD Virtualization

Figure 1. System overview of NetFlash.

requests, the measured network latency can help the SDF
adjust I/O scheduling to meet the service-level objective.
2 NetFlash Design and Implementation
In this paper, we rethink the software-defined network and
storage hierarchy, and propose a new software-defined archi-
tecture, NetFlash, shown in Figure 1. We first decouple the
storage management functions (i.e., flash translation layer)
of SSDs, and integrate appropriate functions such as GC
and wear-leveling into the SDN to enable SDN/SDF state
sharing and global resource management. Second, we use
state sharing in the data plane to coordinate I/O scheduling.
Third, to alleviate the GC overhead, NetFlash exploits the
idle data replicas in the rack and redirects I/O requests that
would be delayed by GC. Fourth, NetFlash enables rack-scale
wear-leveling using a two-level wear leveling mechanism.
Decoupling the Storage Management. As the ToR switch
has limited hardware resources, we keep the essential func-
tions for the virtual SSD (vSSD) management locally on stor-
age servers. They include SSD virtualization, device-level
mapping, and local wear leveling for SSDs in a server.

To make the ToR switch aware of the states of vSSDs in a
rack, NetFlash maintains two tables as shown in Figure 2: (1)
replica table, which tracks the GC status and replica of each
vSSD; (2) destination table, which tracks the server IP and
GC status of each vSSD. For state communication between
the ToR switch and storage servers in the rack, NetFlash has
its own network packet format based on regular network
protocols. The packet has one field to indicate different op-
erations, one field for the target vSSD ID, and one field for
the measured network latency for the packets transferred
through the data center network. The payload will be filled
according to the operation specified in NetFlash header.
Coordinated I/O Scheduling. NetFlash tracks I/O requests
across the entire stack: (1) 𝑁𝑒𝑡𝑡𝑖𝑚𝑒 : the elapsed time in the
network since the I/O request is issued until it reaches the
storage server; (2) 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 : the delayed time in the I/O
queue of the storage stack; (3) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 : the predicted time

1



vSSD_ID GC Status Replica vSSD_ID
vSSD1 1 vSSD12

... ... ...

vSSD_ID GC Status Server IP
vSSD1 1 10.0.0.16

... ... ...
vSSD12 0 10.0.0.20

(a) Replica Table

(b) Destination Table

Figure 2. NetFlash tables placed in the ToR switch.

to transfer the response back over the network. To manage
I/O scheduling in SDF, NetFlash uses 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 = (𝑁𝑒𝑡𝑡𝑖𝑚𝑒

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒+ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) as the scheduling priority. As
NetFlash issues I/O requests from the queue in the storage
stack with the maximum 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 value. Unlike state-of-the-
art storage I/O scheduling schemes, NetFlash considers the
network latency to help reduce the end-to-end latency.

NetFlash tracks the𝑁𝑒𝑡𝑡𝑖𝑚𝑒 with In-band Network Teleme-
try (INT) in programmable switches [1] and determines the
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 using the queuing delay for each I/O request in
the queue of the storage stack. NetFlash predicts the time it
will take to return the response (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) with a simple
yet effective sliding window algorithm that uses the average
network latency measured from the most recent requests.
Coordinated Garbage Collection. Since the ToR switch
forwards each request entering the rack, it is natural to utilize
the switch to coordinate the GC events across these SSDs.

For each read request in the switch, NetFlash queries the
replica table to get the GC status and replica for the vSSD.
The destination table is queried for for the GC status of the
replica. If the vSSD is not performing GC or if both the vSSD
and its replica are performing GC, we forward the packet as
is. Otherwise, we redirect the request to the replica vSSD.
Since all replicas receive the same writes, they may per-

form GC concurrently [18]. Thus, we empower the switch to
delay a replica’s GC by configuring a relaxed soft_threshold.
Instead of having the SDF notify the switch when it must
do GC (at the hard_threshold), it requests GC once its free
block ratio falls below the earlier soft_threshold. The switch
can therefore delay GC in one replica until it reaches the
hard_threshold or until the other replica finishes GC.

NetFlash also opportunistically utilizes idle cycles to free
blocks. NetFlash predicts the idle time for a vSSD based on
the last interval between I/O requests [3, 22, 25]. Once the
predicted interval exceeds a set threshold, the storage server
executes the GC and updates the GC status in the switch.
Rack-ScaleWear Leveling. To extend the lifetime of a rack
of SSDs, we propose a two-level wear leveling mechanism: a
local (intra-server) wear balancer processes the local wear
balance between SSDs in a server, and a global (inter-server)
wear balancer reduces the wear variance for SSDs in a rack.
These balancers cooperate to ensure rack-scale wear leveling.

For the local wear balancer, to obtain the uniform life-
time among SSDs in a storage server, we track the average
erase count for an SSD and periodically swap the SSD that
has incurred the maximum wear with the SSD that has the

100/0 95/5 80/20 50/50 20/80 5/95
Read/Write Mix (%)

0
0.2
0.4
0.6
0.8

1

N
or

m
. P

99
.9

 L
at

en
cy

VDC NetFlash (Software) NetFlash

Figure 3. P99.9 read latency (excluding write-only).
minimum rate of wear, following the relaxed wear leveling
approach developed in [9]. NetFlash can achieve uniform
lifetime for SSDs in a storage server by swapping once per
12 days in the worst case. Similarly, we quantify the wear
imbalance between storage servers by using the wear of a
server (average erase count of its SSDs). However, the swap-
ping cost between servers is more expensive than within a
server, due to the networking overhead. Therefore, we relax
the swapping frequency to every 8 weeks by default.
Implementation.We implement NetFlash using a Tofino
switch [23] and programmable SSD, whose controller allows
read/write/erase operations against raw flash resources. The
switch tables are implemented using P4 [4]. The custom
packet format is implemented with DPDK [10].
Evaluation. We compare NetFlash with state-of-the-art
software-defined storage architecture designs: (1) VDC: Vir-
tual datacenter (VDC) [2], which enables end-to-end isola-
tion between each flow sharing the same physical network
and storage with multi-resource token-bucket rate limiting;
(2) NetFlash (Software): We extend VDC by adding software-
based coordinated I/O scheduling and GC, instead of using a
programmable switch and SSDs.
Our evaluation shows that: (1) NetFlash reduces the tail

latency of I/O requests by up to 5.8× for data-center applica-
tions (see Figure 3); (2) NetFlash is robust to various storage
and network scheduling policies; (3) NetFlash benefits vari-
ous SSD devices and network latency distributions; and (4)
NetFlash ensures the lifetime of an entire rack of SSDs.
3 Conclusion and Future Work
We present NetFlash, a new rack-scale storage system by co-
designing the software-defined networking and storage stack.
As software-defined data centers envision virtualization and
pooling of compute, memory, and storage resources for flex-
ibility and agility [29], these resources are increasingly dis-
aggregated over the network [7, 17, 26]. The trend towards
disaggregation provides opportunities for co-designing with
SDN. As we show with NetFlash, network/storage co-design
can improve end-to-end performance through cross-stack
state sharing and coordination between SDN and SDF. Ac-
cordingly, NetFlash represents an important step towards
building next-generation software-defined data centers. Sim-
ilarly, prior work has identified co-design opportunities be-
tween SDN and disaggregated memory [15, 30]. As future
work, we wish to exploit potential co-design opportunities
between the compute, memory, and storage coordinately
in the disaggregated setting, while treating programmable
switches as the new operating system for managing hard-
ware resources at rack scale.

2



References
[1] In-band Network Telemetry (INT) Dataplane Specifica-

tion. https://github.com/p4lang/p4-applications/blob/master/
docs/INT.pdf.

[2] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg
O’Shea, and Eno Thereska. End-to-end performance isola-
tion through virtual datacenters. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14),
Broomfield, CO, October 2014.

[3] Eitan Bachmat and Jiri Schindler. Analysis of methods for
scheduling low priority disk drive tasks. In Proceedings of
the 2002 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS’02),
2002.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, et al. P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3), 2014.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Program-
mming Protocol-Independent Packet Processors. ACM SIG-
COMM Computer Communication Review, 44(3), July 2014.

[6] David Clark, Jennifer Rexford, and Amin Vahdat. A Purpose-
Built Global Network: Google’s Move to SDN. Communica-
tions of ACM, 59(3), March 2016.

[7] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disaggrega-
tionwith infiniswap. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17), Boston, MA,
2017. USENIX Association.

[8] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma
Pakha, Riza O. Suminto, Cesar A. Stuardo, Andrew A. Chien,
and Haryadi S. Gunawi. MittOS: Supporting Millisecond Tail
Tolerance with Fast Rejecting SLO-Aware OS Interface. In Pro-
ceedings of the 26th Symposium on Operating Systems Principle
(SOSP’17), 2017.

[9] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,
Sudipta Sengupta, Bikash Sharma, and Moinuddin K. Qureshi.
Flashblox: Achieving both performance isolation and uniform
lifetime for virtualized ssds. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17), Santa
Clara, CA, 2017.

[10] Intel. Intel data plane development kit (dpdk), 2022. http:
//dpdk.org/.

[11] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. Netcache:
Balancing key-value stores with fast in-network caching. In
SOSP’17, Shanghai, China, 2017.

[12] Joey Benamy. Software-defined infrastructure: What is it,
and why is it the future of it?
https://stratacloud.com/blog/software-defined-
infrastructure-what-is-it-\and-why-is-it-the-future-of-it,
2016.

[13] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam,
Yibo Zhu, Hongqiang Harry Liu, Jitu Padhye, Shachar Rain-
del, Steven Swanson, Vyas Sekar, and Srinivasan Seshan. Hy-
perloop: Group-based nic-offloading to accelerate replicated
transactions in multi-tenant storage systems. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on

Data Communication (SIGCOMM’18), 2018.
[14] Laura Caulfield. Project denali to define flexible ssds for

cloud-scale applications.
https://www.opencompute.org/files/2018-03-OCP-
Denali.pdf, 2018.

[15] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khan-
delwal, Lin Zhong, and Abhishek Bhattacharjee. Mind: In-
network memory management for disaggregated data centers.
In Proceedings of the ACM SIGOPS 28th Symposium on Operat-
ing Systems Principles (SOSP’21)). Association for Computing
Machinery, 2021.

[16] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim,
and Arvind. Application-Managed Flash. In Proceedings of
the 14th USENIX Conference on File and Storage Technologies
(FAST’16), Santa Clara, CA, February 2016.

[17] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea
Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya,
Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and
Ricardo Bianchini. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’23). Association
for Computing Machinery, 2023.

[18] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, Gre-
gory R. Ganger, and Haryadi S. Gunawi. loda: A host/device
co-design for strong predictability contract on modern flash
storage. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP ’21). Association for
Computing Machinery, 2021.

[19] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krish-
namurthy, and Kishore Atreya. Incbricks: Toward in-network
computation with an in-network cache. In ASPLOS’17, Xian,
China, 2017.

[20] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng
Zhu, Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu
Shu, Minglu Li, and Jiesheng Wu. Perseus: A Fail-Slow de-
tection framework for cloud storage systems. In 21st USENIX
Conference on File and Storage Technologies (FAST’23), Santa
Clara, CA, 2023. USENIX Association.

[21] Matias Bjorling and Javier Gonzalez and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem. In Proc.
USENIX FAST’17, Santa Clara, CA, February 2016.

[22] Ningfang Mi, Alma Riska, Qi Zhang, Evgenia Smirni, and Erik
Riedel. Efficient management of idleness in storage systems.
ACM Trans. Storage, 5(2), 2009.

[23] EdgeCore Networks. DCS801 6.4T Programmable Data Center
Switch, 2022.

[24] Jian Ouyang, Shiding Lin, Song Jiang, Yong Wang, Wei Qi,
Jason Cong, and Yuanzheng Wang. SDF: Software-Defined
Flash for Web-Scale Internet Storage Systems. In Proc. ACM
ASPLOS, Salt Lake City, UT, March 2014.

[25] Benjamin Reidys, Peng Liu, and Jian Huang. Rssd: Defend
against ransomware with hardware-isolated network-storage
codesign and post-attack analysis. In Proceedings of the 27th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22),
Lausanne, Switzerland, 2022.

[26] SNIA. Rethinking Software Defined Memory (SDM) for large-
scale applications with faster interconnects and memory tech-
nologies, 2022.

3

https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
http://dpdk.org/
http://dpdk.org/
https://stratacloud.com/blog/software-defined-infrastructure-what-is-it-\and-why-is-it-the-future-of-it
https://stratacloud.com/blog/software-defined-infrastructure-what-is-it-\and-why-is-it-the-future-of-it
https://www.opencompute.org/files/2018-03-OCP-Denali.pdf
https://www.opencompute.org/files/2018-03-OCP-Denali.pdf


[27] Steve Helvie and Rajeev Sharma. Software defined container-
based storage solution has arrived on ocp storage hardware
platforms!
https://www.opencompute.org/blog/software-defined-
container-based-storage-solution-has-arrived-on-ocp-
storage-hardware-platforms, 2020.

[28] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Kara-
giannis, Antony Rowstron, Tom Talpey, Richard Black, and
Timothy Zhu. IOFlow: A Software-Defined Storage Architec-
ture. In Proceedings of the SOSP’13, Farmington, PA, November
2013.

[29] VMWare. Software-Defined Data Center (SDDC) Solutions,
2023.

[30] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and
Jiwu Shu. Concordia: Distributed shared memory with In-
Network cache coherence. In 19th USENIX Conference on File
and Storage Technologies (FAST’21). USENIX Association, 2021.

[31] Ning Zhang, Junichi Tatemura, Jignesh M. Patel, and Hakan
Hacigumus. Re-evaluating Designs for Multi-Tenant OLTP
Workloads on SSD-based I/O Subsystems. In Proc. SIGMOD’14,
Snowbird, UT, June 2014.

4

https://www.opencompute.org/blog/software-defined-container-based-storage-solution-has-arrived-on-ocp-storage-hardware-platforms
https://www.opencompute.org/blog/software-defined-container-based-storage-solution-has-arrived-on-ocp-storage-hardware-platforms
https://www.opencompute.org/blog/software-defined-container-based-storage-solution-has-arrived-on-ocp-storage-hardware-platforms

	Abstract
	1 Background and Motivation
	2 NetFlash Design and Implementation
	3 Conclusion and Future Work
	References

